Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this Letter, we propose and experimentally demonstrate a simple but efficient method to excite spoof surface plasmons (SSP) through periodic metallic cylinders at microwave frequencies. The rigorous multiple scattering theory indicates that most of the incident propagating waves can pass the cylinders and be converted into the desired harmonics. Furthermore, by tuning the incident angle, controlling the directions of the excited SSP at different frequencies is also realized. The numerical simulations achieve a bidirectional efficiency of 90% at 9.68 GHz and unidirectional efficiency of 79%-85% at 7.46-9.7 GHz, when the incident angle changes from 60° to 120°. Meanwhile, the maximum contrast ratio between the powers of SSP launched in two opposite directions can reach up to 34 dB. The experimental results under 90° and 77.5° illuminations at 9.68 and 8.56 GHz provide strong support for the coupling mechanism. This method may provide technique support in the SSP-based communication and imaging systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.44.003972 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!