Background Alzheimer's disease (AD) is the most prevalent form of dementia. Currently, the most studied biomarkers of AD are cerebrospinal fluid (CSF) amyloid β 1-42, total tau and phosphorylated tau. However, misdiagnosis can exceed 20%. Recently, we found that CSF amyloid β precursor-like protein-1 (APLP1) and neuronal pentraxin receptor (NPTXR) are promising biomarkers of AD. The aim of the present study is to validate CSF APLP1 and NPTXR as biomarkers of AD severity. Methods APLP1 and NPTXR concentrations were measured in the CSF of patients with mild cognitive impairment (MCI) (n = 14), mild AD (n = 21), moderate AD (n = 43) and severe AD (n = 30) using enzyme-linked immunosorbent assays (ELISAs). Results CSF APLP1 and NPTXR were not associated with age or sex. CSF APLP1 was not different between any of the AD severity groups (p = 0.31). CSF NPTXR was significantly different between MCI and mild AD (p = 0.006), mild and moderate AD (p = 0.016), but not between moderate and severe AD (p = 0.36). NPTXR concentration progressively declined from MCI to mild, to moderate and to severe AD patients (p < 0.0001, Kruskal-Wallis test). CSF NPTXR positively correlated with the Mini-Mental Status Examination (MMSE) score (p < 0.001). Conclusions NPTXR concentration in CSF is a promising biomarker of AD severity and could inform treatment success and disease progression in clinical settings.

Download full-text PDF

Source
http://dx.doi.org/10.1515/cclm-2019-0428DOI Listing

Publication Analysis

Top Keywords

csf aplp1
12
aplp1 nptxr
12
cerebrospinal fluid
8
neuronal pentraxin
8
pentraxin receptor
8
receptor nptxr
8
alzheimer's disease
8
csf amyloid
8
mci mild
8
mild moderate
8

Similar Publications

The corona virus (SARS-CoV-2) pandemic and the resulting long-term neurological complications in patients, known as long COVID, have renewed interest in the correlation between viral infections and neurodegenerative brain disorders. While many viruses can reach the central nervous system (CNS) causing acute or chronic infections (such as herpes simplex virus 1, HSV-1), the lack of a clear mechanistic link between viruses and protein aggregation into amyloids, a characteristic of several neurodegenerative diseases, has rendered such a connection elusive. Recently, we showed that viruses can induce aggregation of purified amyloidogenic proteins via the direct physicochemical mechanism of heterogeneous nucleation (HEN).

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is a clinically and biologically heterogenous disease with currently unpredictable progression and relapse. After the development and success of neurofilament as a cerebrospinal fluid (CSF) biomarker, there is reinvigorated interest in identifying other markers of or contributors to disease. The objective of this study is to probe the predictive potential of a panel of brain-enriched proteins on MS disease progression and subtype.

View Article and Find Full Text PDF

Mutations in the gene increase the risk of developing Parkinson's disease (PD). However, most carriers of mutations do not develop PD throughout their lives. The mechanisms of how mutations contribute to PD pathogenesis remain unclear.

View Article and Find Full Text PDF

Endosomal trafficking has emerged as a defective biological pathway in Alzheimer's disease (AD), and the pathway is a source of cerebrospinal fluid (CSF) protein accumulation. Nevertheless, the identity of the CSF proteins that accumulate in the setting of defects in AD's endosomal trafficking pathway remains unknown. Here, we performed a CSF proteomic screen in mice with a neuronal-selective knockout of the core of the retromer complex VPS35, a master conductor of endosomal traffic that has been implicated in AD.

View Article and Find Full Text PDF

Background Alzheimer's disease (AD) is the most prevalent form of dementia. Currently, the most studied biomarkers of AD are cerebrospinal fluid (CSF) amyloid β 1-42, total tau and phosphorylated tau. However, misdiagnosis can exceed 20%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!