Epigenetic regulation orchestrates many cellular processes and greatly influences key disease mechanisms. Histone deacetylase (HDAC) enzymes play a crucial role either as biomarkers or therapeutic targets owing to their involvement in specific pathophysiological pathways. Beyond their well-characterized role as histone modifiers, HDACs also interact with several nonhistone substrates and their increased expression has been highlighted in specific diseases. The HDAC6 isoform, due to its unique cytoplasmic localization, modulates the acetylation status of tubulin, HSP90, TGF-β, and peroxiredoxins. HDAC6 also exerts noncatalytic activities through its interaction with ubiquitin. Both catalytic and noncatalytic functions of HDACs are being actively studied in the field of specific rare disorders beyond the well-established role in carcinogenesis. This Perspective outlines the application of HDAC(6) inhibitors in rare diseases, such as Rett syndrome, inherited retinal disorders, idiopathic pulmonary fibrosis, and Charcot-Marie-Tooth disease, highlighting their therapeutic potential as innovative and targeted disease-modifying agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.9b00924 | DOI Listing |
Organisms with smaller genomes often perform multiple functions using one multi-subunit protein complex. The Silent Information Regulator complex (SIRc) carries out all of the core functions of heterochromatin. SIR complexes first drive the initiation and spreading of histone deacetylation in an iterative manner.
View Article and Find Full Text PDFMed Res Rev
January 2025
Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain.
This review provides a comprehensive overview of the role of G9a/EHMT2, focusing on its structure and exploring the impact of its pharmacological and/or gene inhibition in various neurological diseases. In addition, we delve into the advancements in the design and synthesis of G9a/EHMT2 inhibitors, which hold promise not only as a treatment for neurodegeneration diseases but also for other conditions, such as cancer and malaria. Besides, we presented the discovery of dual therapeutic approaches based on G9a inhibition and different epigenetic enzymes like histone deacetylases, DNA methyltransferases, and other lysine methyltransferases.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Hematology, Qilu Hospital of Shandong University, No.117, West of Wenhua Road, Jinan, Shandong, 250012, People's Republic of China.
Background: Drug resistance and immune escape continue to contribute to poor prognosis in AML. Increasing evidence suggests that exosomes play a crucial role in AML immune microenvironment.
Methods: Sanger sequencing, RNase R and fluorescence in situ hybridization were performed to confirm the existence of circ_0006896.
Sci Rep
January 2025
Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea.
De novo shoot regeneration, characterized by the emergence of adventitious shoots from excised or damaged tissues or organs in vitro, is regulated by the complex interplay between genetic and epigenetic regulatory mechanisms. However, the specific effect of histone deacetylation on shoot regeneration remains poorly understood. This study investigated the effects of trichostatin A (TSA), a histone deacetylase inhibitor, on shoot regeneration in callus derived from root explants.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India. Electronic address:
Breast cancer (BC) is the most prevalent type of cancer in women worldwide and it is classified into a few distinct molecular subtypes based on the expression of growth factor and hormone receptors. Though significant progress has been achieved in the search for novel medications through traditional and advanced approaches, still we need more efficacious and reliable treatment options to treat different types and stages of BC. Sirtuins (SIRT1-7) a class III histone deacetylase play a major role in combating various cancers including BC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!