Correlative light and electron microscopy (CLEM) enables ultrastructural-level analysis of fluorescence-labeled proteins by combining images obtained from both fluorescence and electron microscopies. A technical challenge with the CLEM method is the effective detection of fluorescence from samples embedded in resins, which generally cause fluorescence decay. To overcome this issue, we developed a method for fluorescence recovery of green fluorescent protein (GFP) in resin-embedded semi-thin sections using commercially available antifade reagents. By applying this method, we successfully obtained CLEM images using field-emission scanning electron microscopy with moderately enhanced GFP signals, demonstrating the efficacy of this simple fluorescence recovery method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jmicro/dfz029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!