A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Floral volatiles identification and molecular differentiation of Osmanthus fragrans by neutral desorption extractive atmospheric pressure chemical ionization mass spectrometry. | LitMetric

Rationale: Floral volatiles are commonly present only at trace amounts and can be degraded or lost during vapor collection, which is often challenging from the analytical standpoint. Osmanthus fragrans Lour. is a widely cultivated plant known for the highly distinct fragrance of its flowers. The identification of specific volatile organic compounds (VOCs) and molecular differentiation of O. fragrans without any chemical pretreatment and VOC collection are important.

Methods: Twenty-eight VOCs released by the flowers from ten different cultivars of O. fragrans were identified using neutral desorption extractive atmospheric pressure chemical ionization mass spectrometry (ND-EAPCI-MS) without any chemical pretreatment or VOC collection. Chemical identification was performed by high-resolution MS analysis and whenever possible was confirmed by the analysis of standards.

Results: According to our literature search, nine of the identified VOCs, 3-buten-2-one, cyclohexadiene, 2-methylfuran, 3-allylcyclohexene, cuminyl alcohol, hotrienol oxide, epoxy-linalool oxide, N-(2-hydroxyethyl) octanamide, and 3-hydroxy-dihydro-β-ionone, have not been reported in O. fragrans in earlier studies. Confident differentiation between ten different cultivars of O. fragrans was achieved by the principal component analysis of the mass spectrometric results.

Conclusions: The results of our ND-EAPCI-MS analysis substantially increase our knowledge about the chemistry of the O. fragrans floral fragrance and demonstrate the power of this technique for direct molecular profiling for plant recognition or in biotechnological applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.8554DOI Listing

Publication Analysis

Top Keywords

floral volatiles
8
molecular differentiation
8
osmanthus fragrans
8
neutral desorption
8
desorption extractive
8
extractive atmospheric
8
atmospheric pressure
8
pressure chemical
8
chemical ionization
8
ionization mass
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!