Current American College of Cardiology/American Heart Association and American Diabetes Association guidelines recommend statin therapy for all patients with diabetes between the ages of 40 and 75, including those without cardiovascular disease (CVD). While diabetes is a major CVD risk factor, not all patients with diabetes have an equal risk of CVD. Thus, a more risk-based approach warrants consideration when recommending statin therapy for the primary prevention of CVD. Coronary artery calcium (CAC) is a noninvasive imaging modality that can help risk stratify patients with diabetes for future CVD events. CAC has been extensively studied in large cohorts such as the Multi-Ethnic Study of Atherosclerosis and found to outperform other novel risk stratification tools including carotid intima-media thickness. Moreover, a CAC score of 0 has been shown to be useful in downgrading the estimated risk of a CVD event in patients with diabetes and an intermediate Pooled Cohort Equation score. As clinicians weigh the recommendation for a lifelong therapy and the problem of statin nonadherence and patients weigh concerns about adverse effects of statins, the decision to initiate statin therapy in patients with diabetes is ideally a shared one between patients and providers, and CAC could facilitate this discussion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6848593 | PMC |
http://dx.doi.org/10.1007/s11606-019-05266-2 | DOI Listing |
Cardiovasc Toxicol
January 2025
Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Harbin, 150001, Heilongjiang, PR China.
Atherosclerosis risk is elevated in diabetic patients, but the underlying mechanism such as the involvement of macrophages remains unclear. Here, we investigated the underlying mechanism related to the pro-inflammatory activation of macrophages in the development of diabetic atherosclerosis. Bioinformatics tools were used to analyze the macrophage-related transcriptome differences in patients with atherosclerosis and diabetic mice.
View Article and Find Full Text PDFJ Infect Dev Ctries
December 2024
Chest Dpt., Ahmed Maher Teaching Hospital, GOTHI, Cairo, Egypt.
Introduction: The present study aimed to explore the epidemiologic threats and factors associated with the coronavirus disease 2019 (COVID-19)-associated mucormycosis (CAM) epidemic that emerged in Egypt during the second COVID-19 wave. The study also aimed to explore the diagnostic features and the role of surgical interventions of CAM on the outcome of the disease in a central referral hospital.
Methodology: The study included 64 CAM patients from a referral hospital for CAM and a similar number of matched controls from COVID-19 patients who did not develop CAM.
J Infect Dev Ctries
December 2024
Nephrology Department, UHC Mother Tereza, Tirane, Albania.
Introduction: Acute kidney injury involves inflammation and intrinsic renal damage, and is a common complication of severe coronavirus disease 2019 (COVID-19). Baseline chronic kidney disease (CKD) confers an increased mortality risk. We determined the renal long-term outcomes of COVID-19 in patients with baseline CKD, and the risk factors prompting renal replacement therapy (RRT) initiation and mortality.
View Article and Find Full Text PDFMol Ther
January 2025
Department of Molecular Medicine, University of Southern Denmark; Odense, 5230, Denmark. Electronic address:
Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!