A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Breast cancer Ki-67 expression prediction by digital breast tomosynthesis radiomics features. | LitMetric

Background: To investigate whether quantitative radiomic features extracted from digital breast tomosynthesis (DBT) are associated with Ki-67 expression of breast cancer.

Materials And Methods: This is a prospective ethically approved study of 70 women diagnosed with invasive breast cancer in 2018, including 40 low Ki-67 expression (Ki-67 proliferation index <14%) cases and 30 high Ki-67 expression (Ki-67 proliferation index ≥ 14%) cases. A set of 106 quantitative radiomic features, including morphological, grey/scale statistics, and texture features, were extracted from DBT images. After applying least absolute shrinkage and selection operator (LASSO) method to select the most predictive features set for the classifiers, low versus high Ki-67 expression was evaluated by the area under the curve (AUC) at receiver operating characteristic analysis. Correlation coefficient was calculated for the most significant features.

Results: A combination of five features yielded AUC of up to 0.698. The five most predictive features (sphericity, autocorrelation, interquartile range, robust mean absolute deviation, and short-run high grey-level emphasis) showed a statistical significance (p ≤ 0.001) in the classification. Thirty-four features were significantly (p ≤ 0.001) correlated with Ki-67, and five of these had a correlation coefficient of > 0.5.

Conclusion: The present study showed that quantitative radiomic imaging features of breast tumour extracted from DBT images are associated with breast cancer Ki-67 expression. Larger studies are needed in order to further evaluate these findings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6694353PMC
http://dx.doi.org/10.1186/s41747-019-0117-2DOI Listing

Publication Analysis

Top Keywords

ki-67 expression
16
breast cancer
12
cancer ki-67
8
digital breast
8
breast tomosynthesis
8
quantitative radiomic
8
breast
7
ki-67
5
expression
4
expression prediction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!