When corneal microsomes were incubated with arachidonic acid in the presence of an NADPH-generating system, two biologically active metabolites of arachidonic acid were formed. The structure of one of the metabolites, compound C, was previously reported to be 12(R)-hydroxy-5,8,10,14-eicosatetraenoic acid and was found to be a potent inhibitor of the Na+/K+-ATPase in the cornea. The second metabolite, compound D, was found to be a potent vasodilator as well as having the property of stimulating protein influx into the aqueous humor of the eye. Following purification of compound D by thin layer chromatography and high pressure liquid chromatography, it was found to lack a UV chromophore in contrast to the previously reported cytochrome P-450-dependent metabolite. Mass spectrometric analysis using positive and negative ionization modes was carried out on derivatized compound D that had been synthesized from a mixture of labeled [( 5,6,8,9,11,12,14,15-2H8]) and unlabeled arachidonic acid incubated with corneal microsomes. The novel arachidonate metabolite had abundant fragment ions consistent with compound D being a monooxygenated derivative of arachidonic acid with a hydroxyl substituent at carbon 12 of the eicosanoid backbone; only seven deuterium atoms from [2H8]arachidonate were retained in the structure. Oxidative ozonolysis yielded a product indicating that the double bonds in metabolite D resided between carbons at positions 8 and 9 and positions 14 and 15 of the 20-carbon chain. Compound D was therefore characterized as 12-hydroxy-5,8,14-eicosatrienoic acid. Model compounds were synthesized from dimethyl malate with the hydroxy at the 12 position with both the R and S absolute configuration and with all double bonds of the cis configuration. Only the 12(R) isomer was found to be a potent vasodilator and to increase aqueous humor protein concentration, suggesting that the biologically active compound D was 12(R)-hydroxy-5,8,14-(Z,Z,Z)-eicosatrienoic acid. As this compound possesses proinflammatory properties, it may play a role in the wound-healing processes of corneal injury.

Download full-text PDF

Source

Publication Analysis

Top Keywords

arachidonic acid
16
cytochrome p-450-dependent
8
arachidonate metabolite
8
corneal microsomes
8
biologically active
8
compound
8
potent vasodilator
8
aqueous humor
8
double bonds
8
acid
7

Similar Publications

Glutathione-scavenging natural-derived ferroptotic nano-amplifiers strengthen tumor therapy through aggravating iron overload and lipid peroxidation.

J Control Release

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China. Electronic address:

Nanomedicine-driven ferroptosis has emerged as a promising tumor treatment strategy through delivering exogenous iron and aggravating the lethal accumulation of lipid peroxides (LPO). However, the compensatory mechanisms of ferroptosis defense systems in cancer cells compromise the therapeutic efficacy and lead to potential side effects. Herein, a highly effective ferroptotic nano-amplifier is designed to synergistically promote ferroptosis via increasing intracellular labile iron, exacerbating lipid peroxidation and overcoming the defense system.

View Article and Find Full Text PDF

Multi-omics analysis reveals toxicity and gut-liver axis disruption induced by polychlorinated biphenyls exposure in Yellowfin Seabream (Acanthopagrus latus).

J Hazard Mater

January 2025

School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China. Electronic address:

Polychlorinated biphenyls (PCBs) are persistent organic pollutants known for their environmental persistence and bioaccumulation, posing significant health risks. This study examines the toxic effects of a representative PCBs (Aroclor 1254) on yellowfin seabream (Acanthopagrus latus) exposured for 30 days through a multi-omics approach. Histopathological examinations revealed structural damage to the intestinal structure and hepatic steatosis, along with elevated serum lipopolysaccharide levels, indicating compromised intestinal barrier integrity and liver inflammation.

View Article and Find Full Text PDF

Background:  COVID-19 is known to cause significant multisystem inflammatory responses, leading to symptoms beyond the acute phase of illness. These "long COVID" symptoms affect quality of life and interfere with daily activities. This pilot study looks at the feasibility, tolerability, and safety of omega-3 (docosahexaenoic acid+eicosapentaenoic acid, EPA) among healthcare workers with long COVID symptoms in New Jersey.

View Article and Find Full Text PDF

Sea urchins, integral to marine ecosystems and valued as a delicacy in Asia and Europe, contain physiologically important long-chain (>C) polyunsaturated fatty acids (PUFA) in their gonads, including arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3) and unusual non-methylene-interrupted fatty acids (NMI-FA) such as 20:2. Although these fatty acids may partially be derived from their diet, such as macroalgae, the present study on has uncovered multiple genes encoding enzymes involved in long-chain PUFA biosynthesis. Specifically, 3 fatty acid desaturases (FadsA, FadsC1 and FadsC2) and 13 elongation of very-long-chain fatty acids proteins (Elovl-like, Elovl1/7-like, Elovl2/5-like, Elovl4-like, Elovl8-like and Elovl6-like A-H) were identified in their genome and transcriptomes.

View Article and Find Full Text PDF

Platelet aggregation and thromboelastometry monitoring in women with preeclampsia: a prospective observational study.

Int J Obstet Anesth

November 2024

Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Institute of Clinical Sciences, Department of Pediatric Anesthesia and Intensive Care, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Background: Thrombocytopenia affects 12-20% of women with preeclampsia and a low platelet count impairs coagulation. Women with preeclampsia have an increased risk of both cerebral hemorrhage, thromboembolism, and postpartum hemorrhage. Studies of platelet function and coagulation in women with preeclampsia show conflicting results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!