Wormlions prefer both fine and deep sand but only deep sand leads to better performance.

Curr Zool

School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.

Published: August 2019

AI Article Synopsis

  • Wormlions are fly larvae that create sand pits to catch their prey and need specific soil conditions.
  • The study compared wormlion habitats to see if they had different sand depths and particle sizes compared to areas without wormlions, finding finer sand but no significant depth difference.
  • In lab experiments, wormlions showed preferences for both fine and deep sand, with those conditions affecting their pit size and response speed to prey, while body mass also influenced their habitat choices.

Article Abstract

Wormlions are small fly larvae that dig pits in loose soil to trap their prey. Similar to other trap-building predators, like spiders and antlions, they depend on the habitat structure for successful trap construction and prey catch. We examined whether sites at which wormlions are present differ in sand depth and particle size from nearby sites, at which wormlions are absent. Next, in the laboratory we manipulated both sand depth and type (fine vs. coarse) to determine their joint effect on microhabitat preference, the size of the constructed pit, wormlion movement, and their latency to respond to prey. We expected better performance by wormlions in fine and deep sand, and the sand in wormlions' natural sites to be finer and deeper. However, in only partial agreement with our expectations, wormlion sites featured finer sand but not deeper sand. In the laboratory, wormlions preferred both fine and deep sand, and moved more in shallow and coarse sand, which we interpret as an attempt to relocate away from unfavorable conditions. However, only deep sand led to larger pits being constructed and to a faster response to prey. The preference for fine sand could, therefore, be related to other benefits that sand provides. Finally, body mass was a dominant factor, interacting with the preference for both deep and fine sand: deep over shallow sand was more favored by large wormlions and fine over coarse sand by smaller ones. Our results suggest that several factors should be incorporated when studying microhabitat selection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6688573PMC
http://dx.doi.org/10.1093/cz/zoy065DOI Listing

Publication Analysis

Top Keywords

deep sand
20
sand
16
fine deep
12
sand deep
8
better performance
8
performance wormlions
8
sites wormlions
8
sand depth
8
fine coarse
8
wormlions fine
8

Similar Publications

Streptofilum capillatum was recently described and immediately caught scientific attention, because it forms a phylogenetically deep branch in the streptophytes and is characterised by a unique cell coverage composed of piliform scales. Its phylogenetic position and taxonomic rank are still controversial discussed. In the present study, we isolated further strains of Streptofilum from biocrusts in sand dunes and Arctic tundra soil.

View Article and Find Full Text PDF

Study on pH-Responsive Delayed, Cross-Linking and Weighted Fracturing Fluid.

Molecules

December 2024

National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing 102249, China.

Hydraulic fracturing of deep, high-temperature reservoirs poses challenges due to elevated temperatures and high fracture pressures. Conventional polymer fracturing fluid (QCL) has high viscosity upon adding cross-linking agents and significantly increases wellbore friction. This paper examines a polymer fracturing fluid with pH response and low friction.

View Article and Find Full Text PDF

On the Properties of New Polyurethane Fast-Curing Polymer Materials.

Materials (Basel)

December 2024

State Key Laboratory of Explosion & Impact and Disaster Prevention & Mitigation, Army Engineering University of PLA, Nanjing 210007, China.

A sequences of unconfined compressive strength tests and flexural tests were conducted in this study to evaluate the curing performance of a new type of polyurethane sand fast-curing polymer material. The mechanical properties of the material were investigated under different curing temperatures (-10 °C to 60 °C), particle sizes (10-15 mesh, 60-80 mesh, 100-120 mesh, and 325 mesh), and material proportions (20% to 60%). Additionally, SEM analysis was employed to further reveal the reinforcement mechanism.

View Article and Find Full Text PDF

Environmental consequences of petroleum mulch application are crucial in regions prone to wind erosion and desertification. This study aimed to assess the long-term effects of petroleum mulching on soil polycyclic aromatic hydrocarbon (PAH) concentrations and the associated human and ecological risk indices. These indices include incremental lifetime cancer risk (ILCR), hazard index (HI), toxic equivalent concentration (TEQ), toxic unit (TU), and risk quotient (RQ) in soil samples from Khuzestan province, Iran.

View Article and Find Full Text PDF

Effective road terrain recognition is crucial for enhancing the driving safety, passability, and comfort of autonomous vehicles. This study addresses the challenges of accurately identifying diverse road surfaces using deep learning in complex environments. We introduce a novel end-to-end Tire Noise Recognition Residual Network (TNResNet) integrated with a time-frequency attention module, designed to capture and leverage time-frequency information from tire noise signals for road terrain classification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!