Cell density regulates many aspects of cell properties and behaviors including metabolism, growth, cytoskeletal structure and locomotion. Importantly, the responses by cultured cells to density signals also uncover key mechanisms that govern animal development and diseases in vivo. Here we characterized a density-responsive reporter system in transgenic Drosophila S2 cells. We show that the reporter genes are strongly induced in a cell density-dependent and reporter-independent fashion. The rapid and reversible induction occurs at the level of mRNA accumulation. We show that multiple DNA elements within the transgene sequences, including a metal response element from the metallothionein gene, contribute to the reporter induction. The reporter induction correlates with changes in multiple cell density and growth regulatory pathways including hypoxia, apoptosis, cell cycle and cytoskeletal organization. Potential applications of such a density-responsive reporter will be discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6694118PMC
http://dx.doi.org/10.1038/s41598-019-47652-0DOI Listing

Publication Analysis

Top Keywords

cell density-dependent
8
drosophila cells
8
cell density
8
density-responsive reporter
8
reporter induction
8
cell
6
reporter
6
density-dependent reporter
4
reporter drosophila
4
cells cell
4

Similar Publications

The bacterial pathogen causes disease in coral species worldwide. The mechanisms of coral colonization, coral microbiome interactions, and virulence factor production are understudied. In other model species, virulence factors like biofilm formation, toxin secretion, and protease production are controlled through a density-dependent communication system called quorum sensing (QS).

View Article and Find Full Text PDF

The marine ecosystem is characterized by a rich diversity of bacterial hosts and their phages. The propagation of phages is primarily limited by their ability to adsorb to host cells and is further challenged by various bacterial defense mechanisms. To fully realize the potential of phage therapy in aquaculture, a comprehensive understanding of phage-host interactions and their regulation is essential.

View Article and Find Full Text PDF

Exploring the antivirulence potential of phenolic compounds to inhibit quorum sensing in Pseudomonas aeruginosa.

World J Microbiol Biotechnol

January 2025

Food Research Center (FoRC), Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.

Bacteria coordinate gene expression in a cell density-dependent manner in a communication process called quorum sensing (QS). The expression of virulence factors, biofilm formation and enzyme production are QS-regulated phenotypes that can interfere in human health. Due to this importance, there is great interest in inhibiting QS, comprising an anti-virulence strategy.

View Article and Find Full Text PDF

Density-dependent flow generation in active cytoskeletal fluids.

Sci Rep

December 2024

Department of Chemical Engineering, Kyoto University, Nishi-kyoku, Kyoto, 615-8510, Japan.

Article Synopsis
  • The actomyosin cytoskeleton, made up of actin fibers and myosin motors, creates contractile forces that influence various cellular movements, but its density-related behaviors are not well understood.
  • By adjusting the concentration of actomyosin cell extracts, researchers found that in cell-sized droplets, actin flows toward the center at a critical density, creating oscillatory motion.
  • The study suggests that changes in myosin activity can disrupt regular oscillatory flows, indicating that the dynamics of actomyosin flow are influenced by the balance between actin density and myosin forces.
View Article and Find Full Text PDF

Unlabelled: is a Gram-negative opportunistic pathogen that poses a significant public health threat, particularly in healthcare settings. A key determinant of virulence is the regulated synthesis and release of extracellular products, which is controlled by a cell density-dependent signaling system known as quorum sensing (QS). uses a complex QS network, including two systems that rely on diffusible N-acylhomoserine lactone (AHL) signal molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!