Skeletal muscle architecture significantly influences the performance capacity of a muscle. A DTI-based method has been recently considered as a new reference standard to validate measurement of muscle structure in vivo. This study sought to quantify muscle architecture parameters such as fascicle length (FL), pennation angle (PA) and muscle thickness (t) in post-stroke patients using diffusion tensor imaging (DTI) and to quantitatively compare the differences with 2D ultrasonography (US) and DTI. Muscle fascicles were reconstructed to examine the anatomy of the medial gastrocnemius, posterior soleus and tibialis anterior in seven stroke survivors using US- and DTI-based techniques, respectively. By aligning the US and DTI coordinate system, DTI reconstructed muscle fascicles at the same scanning plane of the US data can be identified. The architecture parameters estimated based on two imaging modalities were further compared. Significant differences were observed for PA and t between two methods. Although mean FL was not significantly different, there were considerable intra-individual differences in FL and PA. On the individual level, parameters measured by US agreed poorly with those from DTI in both deep and superficial muscles. The significant differences in muscle parameters we observed suggested that the DTI-based method seems to be a better method to quantify muscle architecture parameters which can provide important information for treatment planning and to personalize a computational muscle model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6694129PMC
http://dx.doi.org/10.1038/s41598-019-47968-xDOI Listing

Publication Analysis

Top Keywords

muscle architecture
12
architecture parameters
12
muscle
10
diffusion tensor
8
tensor imaging
8
dti-based method
8
quantify muscle
8
muscle fascicles
8
parameters
5
dti
5

Similar Publications

Programmable embedded bioprinting for one-step manufacturing of arterial models with customized contractile and metabolic functions.

Trends Biotechnol

January 2025

State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China. Electronic address:

Replicating the contractile function of arterial tissues in vitro requires precise control of cell alignment within 3D structures, a challenge that existing bioprinting techniques struggle to meet. In this study, we introduce the voxel-based embedded construction for tailored orientational replication (VECTOR) method, a voxel-based approach that controls cellular orientation and collective behavior within bioprinted filaments. By fine-tuning voxel vector magnitude and using an omnidirectional printing trajectory, we achieve structural mimicry at both the macroscale and the cellular alignment level.

View Article and Find Full Text PDF

Motor unit firing rate (MUFR) and pennation angle were measured concurrently in males and females from submaximal to maximal intensities. Thirty participants, (16F and 14M) performed isometric dorsiflexion contractions at 20%, 40%, 60%, 80% and 100% of maximal voluntary contraction (MVC). During each contraction, measures of MUFR were obtained via surface electromyography decomposition, and muscle fiber pennation angle and fascicle length were obtained via ultrasound.

View Article and Find Full Text PDF

Hypervitaminosis D leads to toxic effects, including hypercalcemia, which can cause severe damage to various organs. Fetuin-A, a glycoprotein with anti-inflammatory properties, may protect tissues from such damage. This study explores the role of Fetuin-A in mitigating hypervitaminosis D-induced damage in renal, hepatic, and cardiac tissues.

View Article and Find Full Text PDF

A growing body of evidence suggests that actin plays a role in nuclear architecture, genome organisation, and regulation. Our study of human lung adenocarcinoma cells demonstrates that the equilibrium between actin isoforms affects the composition of the nuclear lamina, which in turn influences nuclear stiffness and cellular behaviour. The downregulation of β-actin resulted in an increase in nuclear area, accompanied by a decrease in A-type lamins and an enhancement in lamin B2.

View Article and Find Full Text PDF

: Amyloidosis is a disorder characterized by the abnormal folding of proteins, forming insoluble fibrils that accumulate in tissues and organs. This accumulation disrupts normal tissue architecture and organ function, often with serious consequences, including death if left untreated. Light-chain amyloidosis (AL) and hereditary transthyretin-type amyloidosis (hATTR) are two of the most common types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!