Postmenopausal osteoporosis is a common condition characterized by the increase and activation of osteoclasts. The present study aimed to investigate the effects of extracellular signal-regulated kinase (ERK) 5 (ERK-5) on postmenopausal osteoporosis by regulating the biological behaviors of osteoblasts. Sprague-Dawley (SD) rats were ovariectomized to develop an osteoporosis model. A lentivirus packaging system was employed to generate lentiviruses capable of up- or down-regulating the expression of ERK-5 in ovariectomized rats. The femoral biomechanical properties, bone mineral density (BMD), contents of calcium (Ca), phosphorus (P) and alkaline phosphatase (ALP) and bone turnover markers in rats, as well as viability, cycle and apoptosis of osteoblasts and ALP activity in osteoblasts were measured in the ovariectomized rats so as to explore the functional significance of ERK-5 in postmenopausal osteoporosis. The femoral mechanical strength of ovariectomized rats was enhanced by overexpression of ERK-5. Meanwhile femoral BMD, and bone metabolism were increased, and bone turnover normalized in the ovariectomized rats when ERK-5 was overexpressed. Lentivirus-mediated ERK-5 overexpression in osteoblasts was observed to inhibit osteoblast apoptosis, and promote viability, accompanied with increased ALP activity. Taken together, ERK-5 could decelerate osteoblast apoptosis and improve postmenopausal osteoporosis by increasing osteoblast viability. Thus, our study provides further understanding on a promising therapeutic target for postmenopausal osteoporosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6734117PMC
http://dx.doi.org/10.1042/BSR20190432DOI Listing

Publication Analysis

Top Keywords

ovariectomized rats
20
postmenopausal osteoporosis
20
apoptosis osteoblasts
8
erk-5 postmenopausal
8
bone turnover
8
alp activity
8
osteoblast apoptosis
8
osteoporosis
7
rats
7
erk-5
7

Similar Publications

Osteoporosis (OP) is a chronic inflammatory bone disease characterized by reduced bone structure and strength, leading to increased fracture risk. Effective therapies targeting both bone and cartilage are limited. This study compared the therapeutic effects of extracorporeal shockwave therapy (ESWT), bisphosphonate (Aclasta), and human Wharton jelly-derived mesenchymal stem cells (WJMSCs) in a rat model of OP.

View Article and Find Full Text PDF

Synthetic Studies on Vitamin D Derivatives with Diverse but Selective Biological Activities.

Chem Pharm Bull (Tokyo)

January 2025

Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.

Article Synopsis
  • A-ring modifications in 1α,25-dihydroxyvitamin D enhance its binding to the vitamin D receptor (VDR) and increase its stability in cells by resisting metabolism, leading to longer-lasting effects.
  • Various modified A-ring precursors synthesized from d-glucose showed specific biological activities with minimal calcemic side effects, including MART-10's potent antitumor effects in cancer models and AH-1's superior bone-forming properties in osteoporosis models compared to natural vitamin D.
  • Ongoing research includes developing a library of fluorinated vitamin D analogs with potential anti-inflammatory effects and therapeutic applications for conditions like psoriasis, alongside the creation of the VDR-silent analog KK-052, which selectively inhibits SREBP/SC
View Article and Find Full Text PDF

Epidemiological evidence associates latent infection with the development of neuropsychiatric disorders, and various immunological and environmental factors play key pathophysiological roles through host immune response alterations. We investigated the cognitive and motor alterations occurring in the terminal stage of infection in rats, and whether a low-protein diet, a high-fat diet or ovariectomy may accelerate their development, given the role of malnutrition and menopause on immunity and resistance to infection. In two sets of experiments, 2-month-old (157.

View Article and Find Full Text PDF

Osteoporosis is a systemic, progressive bone disease that causes metabolic disorders. Previous study identified the preventive effects of hydrolyzed egg yolk peptide (YPEP) on osteoporosis. However, the underlying antiosteoporosis mechanism remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!