Noble gases (Ngs) are the least reactive elements in the periodic table towards chemical bond formation when compared with other elements because of their completely filled valence electronic configuration. Very often, extreme conditions like low temperatures, high pressures and very reactive reagents are required for them to form meaningful chemical bonds with other elements. In this personal account, we summarize our works to date on Ng complexes where we attempted to theoretically predict viable Ng complexes having strong bonding to synthesize them under close to ambient conditions. Our works cover three different types of Ng complexes, , non-insertion of NgXY type, insertion of XNgY type and Ng encapsulated cage complexes where X and Y can represent any atom or group of atoms. While the first category of Ng complexes can be thermochemically stable at a certain temperature depending on the strength of the Ng-X bond, the latter two categories are kinetically stable, and therefore, their viability and the corresponding conditions depend on the size of the activation barrier associated with the release of Ng atom(s). Our major focus was devoted to understand the bonding situation in these complexes by employing the available state-of-the-art theoretic tools like natural bond orbital, electron density, and energy decomposition analyses in combination with the natural orbital for chemical valence theory. Intriguingly, these three types of complexes represent three different types of bonding scenarios. In NgXY, the strength of the donor-acceptor Ng→XY interaction depends on the polarizing power of binding the X center to draw the rather rigid electron density of Ng towards itself, and sometimes involvement of such orbitals becomes large enough, particularly for heavier Ng elements, to consider them as covalent bonds. On the other hand, in most of the XNgY cases, Ng forms an electron-shared covalent bond with X while interacting electrostatically with Y representing itself as [XNg]Y. Nevertheless, in some of the rare cases like NCNgNSi, both the C-Ng and Ng-N bonds can be represented as electron-shared covalent bonds. On the other hand, a cage host is an excellent moiety to examine the limits that can be pushed to attain bonding between two Ng atoms (even for He) at high pressure. The confinement effect by a small cage-like BN can even induce some covalent interaction within two He atoms in the He@BN complex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719121 | PMC |
http://dx.doi.org/10.3390/molecules24162933 | DOI Listing |
Appl Neuropsychol Adult
January 2025
Faculty Xavier Institute of Engineering, Mahim, India.
In the fields of engineering, science, technology, and medicine, artificial intelligence (AI) has made significant advancements. In particular, the application of AI techniques in medicine, such as machine learning (ML) and deep learning (DL), is rapidly growing and offers great potential for aiding physicians in the early diagnosis of illnesses. Depression, one of the most prevalent and debilitating mental illnesses, is projected to become the leading cause of disability worldwide by 2040.
View Article and Find Full Text PDFJ Am Coll Health
January 2025
Department of Psychology, Wilfrid Laurier University, Waterloo, Ontario, Canada.
Introduction: Undergraduate students face a multitude of unique stressors which can affect their mental health and well-being. Finding ways to promote positive mental health among students is critical. Engagement in prosocial behavior is one way to buffer against such negative mental health outcomes.
View Article and Find Full Text PDFPLoS One
January 2025
The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China.
Background: Previous studies have separately suggested a possible association between the vitamin exposure, blood biochemical indicators, and bone density. Our study aimed to investigate the relationship between vitamin exposure serum concentrations, blood biochemical indicator serum concentrations, and BMC and BMD using the NHANES 2017-2018 nutrient survey data. This population-based cross-sectional study aimed to explore these associations.
View Article and Find Full Text PDFPLoS One
January 2025
Centre for Research on Evaluation, Science and Technology (CREST), Stellenbosch University, Stellenbosch, South Africa.
Academic interest in scientists who regularly appear in the media dates back to Rae Goodell's seminal book "The visible scientists", in which she lists distinct characteristics of visible scientists, including being controversial, articulate, colorful, and reputable as a scientist. Visible scientists thus share relevant media-related characteristics that stand out in their portrayal as a group and are reminiscent of other celebrities' characteristics. However, questions arise: what is special about the celebrity being a scientist? How many and what types of scientists fall into this category? What are the peers' and the public's expectations towards the social role of the visible scientist? To date, work on visible scientists has focused on theorizing them in the context of the relationship between science and its publics and empirical studies have mainly sought to characterize visible scientists and focused on single countries.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Computation, Information and Technology, Technical University of Munich, Garching 85748, Germany.
Two-dimensional layered materials (2DLMs) have received increasing attention for their potential in bioelectronics due to their favorable electrical, optical, and mechanical properties. The transformation of the planar structures of 2DLMs into complex 3D shapes is a key strategic step toward creating conformal biointerfaces with cells and applying them as scaffolds to simultaneously guide their growth to tissues and enable integrated bioelectronic monitoring. Using a strain-engineered self-foldable bilayer, we demonstrate the facile formation of predetermined 3D microstructures of 2DLMs with controllable curvatures, called microrolls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!