Through the control of the molecular weight, water content and monomer concentration, polyethylene glycol dimethacrylate (PEGDMA) based hydrogels have been adapted for numerous applications, including as structural scaffolds, drug delivery vehicles and cell carriers. However, due to the low biodegradability rates, the use of PEGDMA in tissue engineering has been limited. Thiol-based monomers have been shown to improve the degradation rates of several PEG-based hydrogels, though their impact on several material properties has not been as well defined. In this work, several mercaptopropianoates, as well as mercaptoacetates, were mixed with PEGDMA and copolymerized. Following an initial polymerization check, it was determined that mercaptoacetate-based thiol monomers did not polymerize in the presence of PEGDMA, whereas mercaptopropionates were more successful. The wettability, and the compressive and tensile strength, in addition to the thermal properties, were determined for successfully copolymerized samples via a combination of differential scanning calorimetry, dynamic mechanical analysis, unconfined compression, and goniometry. Further study determined that dipentaerythritol hexa(3-mercaptopropionate) (DiPETMP) successfully enhanced the biodegradability of PEGDMA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722562 | PMC |
http://dx.doi.org/10.3390/polym11081339 | DOI Listing |
Sci Rep
January 2025
School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
A nanoemulsion was fabricated from Cananga odorata essential oil (EO) and stabilized by incorporation of Tween 80 using ultrasonication. The major constituents of the EO were benzyl benzoate, linalool, and phenylmethyl ester. Differing sonication amplitude (20-60%) and time (2-10 min) were assessed for effects on nanoemulsion droplet size and polydispersity index (PI).
View Article and Find Full Text PDFPharmaceutics
January 2025
CDL Research, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
Background/objectives: Glioblastoma is the most common and lethal primary brain tumor. Patients often suffer from tumor- and treatment induced vasogenic edema, with devastating neurological consequences. Intracranial edema is effectively treated with dexamethasone.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutical Sciences, Università degli Studi di Milano, via G: Colombo, 71, 20133 Milano, Italy.
Background/objectives: The objective of this paper is to design a novel film-forming system (FFS) based on Eudragit E PO (EuE) polymeric solutions, differing in volatile solvents (i.e., isopropanol and ethanol) and plasticizers (i.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Institute of Graduate Studies, Bioengineering Division, Tokat Gaziosmanpaşa University, 60250 Tokat, Türkiye.
Hernia repair is the most common surgical operation applied worldwide. Mesh prostheses are used to support weakened or damaged tissue to decrease the risk of hernia recurrence. However, the patches currently used in clinic applications have significant short-term and long-term risks.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
Poly(lactic acid) (PLA) exhibits excellent shape memory properties but suffers from brittleness and a high glass transition temperature (T), limiting its utility in flexible and durable applications. This study explored the modification of PLA properties through the incorporation of poly(ethylene glycol) (PEG), varying in both content (5-20 wt%) and molecular weight (4000-12,000 g/mol), to enhance its suitability for specific applications, such as medical splints. The PLA/PEG blend, containing 15 wt% PEG and with a molecular weight of 12,000 g/mol, exhibited superior shape fixity (99.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!