How nitric oxide (NO) activates its primary receptor, α1/β1 soluble guanylyl cyclase (sGC or GC-1), remains unknown. Likewise, how stimulatory compounds enhance sGC activity is poorly understood, hampering development of new treatments for cardiovascular disease. NO binding to ferrous heme near the N-terminus in sGC activates cyclase activity near the C-terminus, yielding cGMP production and physiological response. CO binding can also stimulate sGC, but only weakly in the absence of stimulatory small-molecule compounds, which together lead to full activation. How ligand binding enhances catalysis, however, has yet to be discovered. Here, using a truncated version of sGC from Manduca sexta, we demonstrate that the central coiled-coil domain, the most highly conserved region of the ~150,000 Da protein, not only provides stability to the heterodimer but is also conformationally active in signal transduction. Sequence conservation in the coiled coil includes the expected heptad-repeating pattern for coiled-coil motifs, but also invariant positions that disfavor coiled-coil stability. Full-length coiled coil dampens CO affinity for heme, while shortening of the coiled coil leads to enhanced CO binding. Introducing double mutation αE447L/βE377L, predicted to replace two destabilizing glutamates with leucines, lowers CO binding affinity while increasing overall protein stability. Likewise, introduction of a disulfide bond into the coiled coil results in reduced CO affinity. Taken together, we demonstrate that the heme domain is greatly influenced by coiled-coil conformation, suggesting communication between heme and catalytic domains is through the coiled coil. Highly conserved structural imperfections in the coiled coil provide needed flexibility for signal transduction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739824PMC
http://dx.doi.org/10.1002/pro.3707DOI Listing

Publication Analysis

Top Keywords

coiled coil
24
signal transduction
12
soluble guanylyl
8
guanylyl cyclase
8
highly conserved
8
protein stability
8
coiled
6
coil
6
sgc
5
binding
5

Similar Publications

Male infertility is a multifactorial condition for which the underlying causes frequently remain undefined. Genetic factors have long been associated with male fertility. However, many of them are poorly or not at all characterized and their biological functions are unknown.

View Article and Find Full Text PDF

Purpose: The depth within the body, small diameter, long length, and varying tissue surrounding the spinal cord impose specific considerations when designing radiofrequency coils. The optimal coil configuration for 7 T cervical spinal cord MRI is unknown and, currently, there are very few coil options. The purpose of this work was (1) to establish a quality control protocol for evaluating 7 T cervical spinal cord coils and (2) to use that protocol to evaluate the performance of 4 different coil designs.

View Article and Find Full Text PDF

Mechanical forces are critical for virtually all fundamental biological processes, yet quantification of mechanical forces at the molecular scale remains challenging. Here, we present a new strategy using calibrated coiled-coils as genetically encoded, compact, tunable, and modular mechano-sensors to substantially simplify force measurement , via diverse readouts (luminescence, fluorescence and analytical biochemistry) and instrumentation readily available in biology labs. We demonstrate the broad applicability and ease-of-use of these coiled-coil mechano-sensors by measuring forces during cytokinesis (formin Cdc12) and endocytosis (epsin Ent1) in yeast, force distributions in nematode axons (β-spectrin UNC-70), and forces transmitted to the nucleus (mini-nesprin-2G) and within focal adhesions (vinculin) in mammalian cells.

View Article and Find Full Text PDF

Angiomotins (Amots) are a family of adaptor proteins with important roles in cell growth, migration, and proliferation. The Amot coiled-coil homology (ACCH) domain has a high affinity for non-phosphorylated and mono-phosphorylated phosphatidylinositol which provides specificity in the membrane association. The membrane specificity is linked with targeting and recycling of the membrane protein to maintain normal cell phenotypes and function.

View Article and Find Full Text PDF

Super-resolution microscopy has revolutionized biological imaging, enabling the visualization of structures at the nanometer length scale. Its application in live cells, however, has remained challenging. To address this, we adapted LIVE-PAINT, an approach we established in yeast, for application in live mammalian cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!