A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Poly(lactide-co-glycolide) grafted hyaluronic acid-based electrospun fibrous hemostatic fragments as a sustainable anti-infection and immunoregulation material. | LitMetric

Poly(lactide-co-glycolide) grafted hyaluronic acid-based electrospun fibrous hemostatic fragments as a sustainable anti-infection and immunoregulation material.

J Mater Chem B

School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China. and Wenzhou Institute of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China and Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Wenzhou, Zhejiang 325011, China.

Published: August 2019

Poly(lactide-co-glycolide) (PLGA) copolymers are promising synthetic materials in the biomedical field. However, in wound management, their hydrophobic properties limit their further application because of their poor adhesion to the surface of moist wounds. Furthermore, the lack of hemostatic materials with sustainable anti-infection and immunoregulation functions remains a highly significant clinical problem, as commercially available hemostatic products, such as Arista™, Celox™ and QuikClot™, do not have sufficient infection prevention and immunoregulation properties. Herein, we employ electrospinning, ammonia dissociation and surface grafting techniques to develop a series of PLGA-based hemostatic materials, including a PLGA electrospun fibrous membrane, PLGA-NH2 fibrous particles and PLGA-hyaluronic acid fibrous fragments (PLGA-HA FFs). Notably, we load azithromycin on the PLGA-HA FFs to endow them with anti-infection and immunoregulation properties. The hemostatic mechanism analysis demonstrates that the PLGA-HA FFs show superior hemostasis performance compared to traditional gauzes. The results show that the PLGA-HA FFs can act as a versatile platform with high encapsulation of azithromycin (83.03% ± 2.81%) and rapid hemostasis (28 ± 2 s) as well as prominent cytocompatibility towards L929 cells, RAW 264.7 cells and red blood cells. We believe that the current research proposes a possible strategy to synthesize materials that achieve not only safe and effective hemostasis, but also have anti-infection and immunoregulation properties for the development of further hemostatic products.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9tb00659aDOI Listing

Publication Analysis

Top Keywords

anti-infection immunoregulation
16
plga-ha ffs
16
immunoregulation properties
12
electrospun fibrous
8
sustainable anti-infection
8
hemostatic materials
8
hemostatic products
8
hemostatic
6
immunoregulation
5
polylactide-co-glycolide grafted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!