A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Potential novel inhibitors against emerging zoonotic pathogen : a virtual screening and molecular dynamics approach. | LitMetric

Potential novel inhibitors against emerging zoonotic pathogen : a virtual screening and molecular dynamics approach.

J Biomol Struct Dyn

Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas - UNIFAL-MG, Alfenas, Minas Gerais, Brazil.

Published: July 2020

Nipah virus is a pathogen considered highly infectious, and its lethality can cause between 40% and 70% of deaths in those infected. At present, no effective treatment is available which results in an imperative need to explore new approaches to the search for drugs. Through virtual screening techniques, docking and molecular dynamics, 183 ligands were evaluated against the Nipah virus glycoprotein (NiV-G), involved throughout the process of virus entry to the host cell, resulting in a good target for blocking the infection. Of the 183 drugs computationally screened, three of them (MMV020537, MMV688888 and MMV019838) were found to be potential inhibitors of NiV-G. Their calculated dissociation constants were 0.03 nM, 2.18 nM and 31.61 nM, respectively. Molecular dynamics studies confirm their stability binding modes in the active site of the protein. These potential inhibitors can be used later as leads for the development of new drugs that allow effective treatment of the disease.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2019.1655480DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
12
virtual screening
8
nipah virus
8
effective treatment
8
potential inhibitors
8
potential novel
4
novel inhibitors
4
inhibitors emerging
4
emerging zoonotic
4
zoonotic pathogen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!