Calich Lagoon is a Mediterranean coastal lagoon located along the northwestern coast of Sardinia (Italy). The connection to marine and fresh water determines the high productivity of this coastal lagoon. Despite its great potential and the presence of natural beds of bivalve mollusks (), the lagoon has not yet been classified for shellfish production. In this study, through a multidisciplinary approach, the presence of several bacterial pathogens ( spp., and spp.) and viral pathogens (hepatitis A virus and norovirus genogroups I and II) was evaluated from March 2017 to February 2018. In addition, phytoplankton composition in lagoon waters and associated algal biotoxins (paralytic and diarrhetic shellfish poisoning) in mussels were also monitored. The aim of this study was to provide useful data to improve knowledge about their seasonal presence and to assess the potential risk for public health, as well as to provide input for future conservation and management strategies. In mussels, spp. were found in spring, along with but spp. were not found in autumn or winter, even though was detected in these seasons. was found in autumn and winter, but not in spring. Norovirus genogroups I and II were found in winter samples. None of the bacteria were found in summer. Algal biotoxins have never been detected in mussel samples. Among potentially harmful phytoplankton, only spp. were present, mainly in summer. The results showed that a possible bacterial and viral contamination, together with the presence of potentially toxic microalgae, is a real problem. Therefore, the development of natural resource management strategies is necessary to ensure the good quality of waters and guarantee the protection of consumers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4315/0362-028X.JFP-18-569 | DOI Listing |
Mar Drugs
December 2024
Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK.
Harmful algal biotoxins in the marine environment are a threat to human food safety due to their bioaccumulation in bivalve shellfish. Whilst official control monitoring provides ongoing risk management for regulated toxins in live bivalve molluscs, no routine monitoring system is currently in operation in the UK for other non-regulated toxins. To assess the potential presence of such compounds, a systematic screen of bivalve shellfish was conducted throughout Great Britain.
View Article and Find Full Text PDFAntioxidants (Basel)
November 2024
Center for Marine Research, Ruđer Bošković Institute, 52210 Rovinj, Croatia.
In this review, we toxicologically assessed the naturally occurring toxin domoic acid. We used the One Health approach because the impact of domoic acid is potentiated by climate change and water pollution on one side, and reflected in animal health, food security, human diet, and human health on the other. In a changing environment, algal blooms are more frequent.
View Article and Find Full Text PDFToxins (Basel)
November 2024
Istituto Zooprofilattico del Mezzogiorno, Via Salute 2, Portici, 80055 Naples, Italy.
A new method for simultaneous determination by liquid chromatography coupled with high resolution mass spectrometry (UHPLC-HRMS/MS) of 14 paralytic shellfish poisoning toxins (PSP), that is, Saxitoxin, Neosaxitoxin, Gonyautoxins and their respective variants, in bivalve molluscs, is herein described. The samples were extracted by acetic acid solution, then analysed by UHPLC coupled with a Q-Exactive Orbitrap Plus high resolution mass spectrometer, by electrospray ionization mode (ESI) with no further clean up step. The analysis was carried out by monitoring both the exact mass of the molecular precursor ion of each compound (in mass scan mode, resolution at 70,000 FWHM) and its respective fragmentation patterns (two product ions) with mass accuracy greater than 5 ppm.
View Article and Find Full Text PDFHarmful Algae
November 2024
Emergency Response Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA.
Background: Microcystins are an emergent public health problem. These toxins are secondary metabolites of harmful cyanobacterial blooms, with blooms becoming more prevalent with eutrophication of water. Exposure to microcystins can result in sickness, liver damage, and even death.
View Article and Find Full Text PDFMar Pollut Bull
November 2024
IPMA, I.P. - Portuguese Institute for Sea and Atmosphere, Av. Dr. Alfredo Magalhães Ramalho, 6, 1495-165 Lisboa, Portugal; CCMAR - Centre of Marine Sciences, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal; S2AQUA - Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal. Electronic address:
During the development and senescence of harmful algal blooms (HAB), most of the algae cells not ingested by grazers or filter-feeding organisms sink to the bottom, making sediments important reservoirs of algae toxins. In this study, lipophilic marine toxins were determined in the sediments collected from depths ranging from 5 to 145 m depth in the marine protected area of Arrábida (southwest Portuguese coast). Sediments were characterized in terms of granulometry, water and organic matter content.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!