Advanced polymer composite coatings in the spacecraft are threatened by harsh space environment factors, such as strong UV radiation, atomic oxygen, thermal cycles, space debris, etc. Their service life can be drastically shortened by the unavoidable formation of cracks caused by these factors (especially strong and abundant UV radiation) during long-term flight. Herein, a UV-responsive microcapsule-based coating is developed for in-orbit damage repairing. UV-responsive microcapsules of which the inner polymeric shell can be degraded rapidly by the outer pure TiO shell under UV radiation are produced by UV-initiated polymerization of Pickering emulsions and subsequently embedded into silicon resin matrices. When damaged, some microcapsules will be ruptured under the stimulus of external force, afterward the unbroken ones around the scratched areas will be degraded by UV radiation, as a result, encapsulated healing agents can be released and finally repair cracks. In this system, UV-responsive microcapsules can release more agents more effectively due to the dual release mode, compared with the traditional crack-repairing system. Moreover, the damage of UV radiation in space can be transferred into the favorable ones, which makes it have a potential application in aerospace coatings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b10737 | DOI Listing |
Sci Rep
December 2024
College of Economics and Management, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
In light of the Chinese government's dual carbon goals, achieving cleaner production activities has become a central focus, with regional environmental collaborative governance, including the management of agricultural carbon reduction, emerging as a mainstream approach. This study examines 268 prefecture-level cities in China, measuring the carbon emission efficiency of city agriculture from 2001 to 2022. By integrating social network analysis and a modified gravity model, the study reveals the characteristics of the spatial association network of city agricultural carbon emission efficiency in China.
View Article and Find Full Text PDFSci Rep
December 2024
India Meteorological Department, New Delhi, 110003, India.
Desert locusts, notorious for their ruinous impact on agriculture, threaten over 20% of Earth's landmass, prompting billions in losses and global food scarcity concerns. With billions of these locusts invading agrarian lands, this is no longer a thing of the past. Recent invasions, such as those in India, where losses reached US$ 3 billion in 2019-20 alone, underscore the urgency of action.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Production Engineering, KTH Royal Institute of Technology, 11428, Stockholm, Sweden.
This study investigates the implementation of collaborative route planning between trucks and drones within rural logistics to improve distribution efficiency and service quality. The paper commences with an analysis of the unique characteristics and challenges inherent in rural logistics, emphasizing the limitations of traditional methods while highlighting the advantages of integrating truck and drone technologies. It proceeds to review the current state of development for these two technologies and presents case studies that illustrate their application in rural logistics.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Medical Microbiology and Infection Prevention, Amsterdam UMC - Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
Vaginal reconstruction is necessary for various congenital and acquired conditions, including vaginal aplasia, trauma, tumors, and gender incongruency. Current surgical and non-surgical treatments often result in significant complications. Decellularized vaginal matrices (DVMs) from human tissue offer a promising alternative, but require effective sterilization to ensure safety and functionality.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, 98195, USA.
Trigger valves are fundamental features in capillary-driven microfluidic systems that stop fluid at an abrupt geometric expansion and release fluid when there is flow in an orthogonal channel connected to the valve. The concept was originally demonstrated in closed-channel capillary circuits. We show here that trigger valves can be successfully implemented in open channels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!