Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Two polymorphs of AgVO , namely the α- and β- forms, were prepared and their physical, structural, optical, electrochemical, and photoelectrochemical characteristics were compared using a battery of experimental and theoretical tools. A two-step method, previously developed in the our laboratory for the electrodeposition of inorganic semiconductor films, was applied to the electrosynthesis of silver vanadate (AgVO ) films on transparent, conducting oxide surfaces. In the first step, silver was cathodically deposited from a non-aqueous bath containing silver nitrate. In the second step, the silver film was anodically stripped in an aqueous medium containing ammonium metavanadate. The anodically generated silver ions at the interface underwent a precipitation reaction with the vanadate species to generate the desired product in situ. Each of these steps were mechanistically corroborated via the use of electrochemical quartz crystal microgravimetry, used in conjunction with voltammetry and coulometry. As-deposited films were crystalline and showed p-type semiconductor behavior. Theoretical insights are provided for the electronic origin of the α→β phase transformation in AgVO and the disparate optical band gaps of the two polymorphs. Finally, implications for the application of this material in solar cells are provided.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201900558 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!