Data Repository of Antimicrobial Peptides (DRAMP, http://dramp.cpu-bioinfor.org/ ) is an open-access comprehensive database containing general, patent and clinical antimicrobial peptides (AMPs). Currently DRAMP has been updated to version 2.0, it contains a total of 19,899 entries (newly added 2,550 entries), including 5,084 general entries, 14,739 patent entries, and 76 clinical entries. The update covers new entries, structures, annotations, classifications and downloads. Compared with APD and CAMP, DRAMP contains 14,040 (70.56% in DRAMP) non-overlapping sequences. In order to facilitate users to trace original references, PubMed_ID of references have been contained in activity information. The data of DRAMP can be downloaded by dataset and activity, and the website source code is also available on dedicatedly designed download webpage. Although thousands of AMPs have been reported, only a few parts have entered clinical stage. In the paper, we described several AMPs in clinical trials, including their properties, indications and clinicaltrials.gov identifiers. Finally, we provide the applications of DRAMP in the development of AMPs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6692298 | PMC |
http://dx.doi.org/10.1038/s41597-019-0154-y | DOI Listing |
Acta Naturae
January 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russian Federation.
The growing incidence of infections caused by antibiotic-resistant strains of pathogens is one of the key challenges of the 21 century. The development of novel technological platforms based on single-cell analysis of antibacterial activity at the whole-microbiome level enables the transition to massive screening of antimicrobial agents with various mechanisms of action. The microbiome of wild animals remains largely underinvestigated.
View Article and Find Full Text PDFExpert Opin Drug Deliv
January 2025
Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, USA.
Introduction: Cyclic antimicrobial peptides (CAMPs) are gaining attention as promising candidates in advanced drug delivery systems due to their structural stability, resistance to proteolytic degradation, and versatile therapeutic potential. Their unique properties enable applications that extend beyond combating multidrug-resistant (MDR) pathogens. Their amphipathic and cell-penetrating properties allow them to efficiently transport drugs across cellular membranes.
View Article and Find Full Text PDFVet Res
January 2025
Department of Fundamental Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China.
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most harmful pathogens in the swine industry. Our previous studies demonstrated that the small extracellular domain (ECL2) of CLDN4 effectively blocks PRRSV infection. In this study, we explored the in vivo administration of swine ECL2 (sECL2) and found that it blocked HP-PRRSV infection and alleviated histopathological changes in organs.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, P. R. China.
Bacterial biofilms, complex microbial communities encased in a protective extracellular matrix, pose a significant threat to public health due to their inherent antibiotic resistance. This review explores the potential of peptides, particularly antimicrobial peptides (AMPs), as innovative tools to combat biofilm-related infections. AMPs, characterized by their potent antimicrobial activity and tissue permeability, offer a promising approach to overcome the challenges posed by biofilms.
View Article and Find Full Text PDFExp Appl Acarol
January 2025
Group for Medical Entomology, Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
Tick salivary proteins are crucial for efficient and successful tick feeding. Most of them are still uncharacterized, especially those involved in the formation of tick cement. Tick salivary protein PA107 is a putative cement protein, which is transcribed in salivary glands during the initial phase of tick feeding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!