Complexing anions such as phosphate or silicate play an ambivalent role in the performance of hydrolyzing metal coagulants: On one hand, they significantly interfere with the hydrolytic pathway of conventional iron or aluminum coagulants, the associated destabilization mechanism remaining rather elusive; on the other hand, they have been shown to be key ingredients in the formulation of innovative coagulant solutions exhibiting improved removal efficiency, their action mechanism at the molecular scale being presently poorly understood. In this paper, we explore the effect of small additions of phosphate ligand on the chemical coagulation of silica nanoparticles with ferric chloride. Transmission Electron Microscopy-Energy Dispersed X-ray Spectroscopy (TEM-EDXS) combined with Extended X-ray absorption Fine Structure Spectroscopy (EXAFS) at the Fe K-edge are used to provide an insight into the nature of coagulant species, whereas jar-tests, laser diffraction, Small Angle X-ray Scattering (SAXS), and electrophoretic mobility, are used to investigate the aggregation dynamics of silica particles in the presence of phosphate ligand. We show that, in spite of a slight increase in the consumption of iron coagulant, the addition of phosphate significantly improves the formation of silica aggregates provided that the elemental Fe/P ratio remains above 7. Such effects originate from both a large increase in the overall number of coagulant species, the binding of a phosphate ligand terminating the growth of polymeric chains of edge-sharing Fe octahedra, and a change in the nature of the coagulant species that evolves with the Fe/P ratio, small polycations built-up from Fe-oligomers linked by phosphate tetrahedra being eventually formed. Those non-equilibrium nanosize Fe-P coagulant species assemble the silica nanoparticles to form hetero-aggregates whose structure is consistent with a Diffusion-Limited Cluster Aggregation mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2019.114960 | DOI Listing |
Molecules
January 2025
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russia.
The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.
View Article and Find Full Text PDFSci Rep
January 2025
College of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China.
The selection of suitable raw materials as adsorbents is a key factor in effectively removing phosphorus from water. As an industrial by-product, soda residue exhibits high porosity and surface area, which can effectively adsorb pollutants. Magnetic lanthanum-iron soda residue (La-Fe-CSR) was synthesized using the co-precipitation method, and its characterization and mechanism for removing phosphate were thoroughly investigated.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
Lateral flow immunoassays (LFIAs) are widely used for their low cost, simplicity, and rapid results; however, enhancing their reliability requires the meticulous selection of ligands and nanoparticles (NPs). SiO@QD@SiO (QD) nanoparticles, which consist of quantum dots (QDs) embedded in a silica (SiO) core and surrounded by an outer SiO shell, exhibit significantly higher fluorescence intensity (FI) compared to single QDs. In this study, we prepared QD@PEG@Aptamer, an aptamer conjugated with QD using succinimidyl-[(N-maleimidopropionamido)-hexaethyleneglycol]ester, which is 130 times brighter than single QDs, for detecting carbohydrate antigen (CA) 19-9 through LFIA.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China.
Background: Emerging perspectives on tumor metabolism reveal its heterogeneity, a characteristic yet to be fully explored in gliomas. To advance therapies targeting metabolic processes, it is crucial to uncover metabolic differences and identify distinct metabolic subtypes. Therefore, we aimed to develop a classification system for gliomas based on the enrichment levels of four key metabolic pathways: glutaminolysis, glycolysis, the pentose phosphate pathway, and fatty acid oxidation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!