Background: Recent studies reported that wearable sensor devices show low validity for assessing the amount of energy expenditure in individuals after stroke.
Objective: We aimed to evaluate the validity of energy expenditure calculation based on the product of energy cost and walked distance estimated by wearable devices in individuals after hemispheric stroke.
Methods: We recruited individuals with hemispheric stroke sequelae who were able to walk without human assistance. The participants wore a tri-axial accelerometer (Actigraph GT3x) and a pedometer (ONStep 400) on the unaffected hip in addition to a respiratory gas exchange analyzer (METAMAX 3B) during 6min of walking at their self-selected walking speed and mode. The energy expenditure was calculated from the product of energy cost measured by the METAMAX 3B and the distance estimated by wearable devices. It was compared to the energy expenditure measured by the METAMAX 3B and the energy expenditure values recorded by the devices according to the manufacturer's algorithms. The validity was investigated by Bland-Altman analysis (mean bias [MB], root mean square error [RMSE], limits of agreement [95%LoA]), and Pearson correlation analysis (r).
Results: We included 26 participants (mean [SD] age 64.6 [14.8] years). With the pedometer, the energy expenditure calculated from the product of energy cost and walked distance showed high accuracy and agreement with METAMAX 3B values (MB=-1.6kcal; RMSE=4.1kcal; 95%LoA=-9.9; 6.6kcal; r=0.87, P<0.01) but low accuracy and agreement with Actigraph GT3x values (MB=15.7kcal; RMSE=8.7kcal; 95%LoA=-1.3; 32.6kcal; r=0.44, P=0.02) because of poorer estimation of walked distance. With the pedometer, this new method of calculation strongly increased the validity parameter values for estimating energy expenditure as compared with the manufacturer's algorithm.
Conclusions: This new method based on the energy cost and distance estimated by wearable devices provided better energy expenditure estimates for the pedometer than did the manufacturer's algorithm. The validity of this method depended on the accuracy of the sensor to measure the distance walked by an individual after stroke.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.rehab.2019.07.002 | DOI Listing |
Environ Sci Technol
January 2025
State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
The distribution and bioaccumulation of environmental pollutants are essential to understanding their toxicological mechanism. However, achieving spatial resolution at the subtissue level is still challenging. Perfluorooctanesulfonate (PFOS) is a persistent environmental pollutant with widespread occurrence.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biomolecular Science and Engineering, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
Bioluminescence, an optical marker that does not require excitation by light, allows researchers to simultaneously observe multiple targets, each exhibiting a different color. Notably, the colors of the bioluminescent proteins must sufficiently vary to enable simultaneous detection. Here, we aimed to introduce a method that can be used to expand the color variation by tuning dual-acceptor bioluminescence resonance energy transfer.
View Article and Find Full Text PDFSci Adv
January 2025
Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
Although lipid-derived acetyl-coenzyme A (CoA) is a major carbon source for histone acetylation, the contribution of fatty acid β-oxidation (FAO) to this process remains poorly characterized. To investigate this, we generated mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1, distal FAO enzyme) knockout macrophages. C-carbon tracing confirmed reduced FA-derived carbon incorporation into histone H3, and RNA sequencing identified diminished interferon-stimulated gene expression in the absence of ACAT1.
View Article and Find Full Text PDFPLoS One
January 2025
School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea.
The oxidation states of vanadium determine its mobility and toxicity, and dissimilatory vanadate reduction has been reported in several microorganisms, highlighting the potential significance of this pathway in the remediation of vanadium contamination and the biogeochemical cycle. However, to date, most known microorganisms capable of reducing vanadate are Gram-negative respiratory bacteria belonging to the phylum Proteobacteria. In this study, we isolated Tepidibacter mesophilus strain VROV1 from deep-sea sediments on the northern Central Indian Ridge and investigated its ability to reduce vanadium and the impact of vanadate on its cellular metabolism.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
Importance: Baseline cerebral microbleeds (CMBs) and APOE ε4 allele copy number are important risk factors for amyloid-related imaging abnormalities in patients with Alzheimer disease (AD) receiving therapies to lower amyloid-β plaque levels.
Objective: To provide prevalence estimates of any, no more than 4, or fewer than 2 CMBs in association with amyloid status, APOE ε4 copy number, and age.
Design, Setting, And Participants: This cross-sectional study used data included in the Amyloid Biomarker Study data pooling initiative (January 1, 2012, to the present [data collection is ongoing]).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!