Background: Cardiovascular disease (CVD) related mortality and morbidity are high in end-stage renal disease (ESRD). The pathophysiology of CVD in ESRD may involve non-traditional CVD risk factors, such as accumulation of advanced glycation endproducts (AGEs), dicarbonyls, endothelial dysfunction (ED) and low-grade inflammation (LGI). However, detailed data on the relation of AGEs and dicarbonyls with ED and LGI in ESRD are limited.

Methods: We examined cross-sectional Spearman's rank correlations of AGEs and dicarbonyls with serum biomarkers of ED and LGI in 43 individuals with chronic kidney disease (CKD) stage 5 not on dialysis (CKD5-ND). Free and protein-bound serum AGEs (N∈-(carboxymethyl)lysine (CML), N∈-(carboxyethyl)lysine (CEL), Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine (MG-H1)) and serum dicarbonyls (glyoxal, methylglyoxal, 3-deoxyglucosone) were analyzed with tandem mass spectrometry, and tissue AGE accumulation was estimated by skin autofluorescence (SAF). Further, serum biomarkers of ED and LGI included sVCAM-1, sE-selectin, sP-selectin, sThrombomodulin, sICAM-1, sICAM-3, hs-CRP, SAA, IL-6, IL-8 and TNF-α.

Results: After adjustment for age, sex and diabetes status, protein-bound CML was positively correlated with sVCAM-1; free CEL with sVCAM-1 and sThrombomodulin; glyoxal with sThrombomodulin; and methylglyoxal with sVCAM-1 (correlation coefficients ranged from 0.36 to 0.44). In addition, free CML was positively correlated with SAA; protein-bound CML with IL-6; free CEL with hs-CRP, SAA and IL-6; free MG-H1 with SAA; protein-bound MG-H1 with IL-6; and MGO with hs-CRP and IL-6 (correlation coefficients ranged from 0.33 to 0.38). Additional adjustment for eGFR attenuated partial correlations of serum AGEs and serum dicarbonyls with biomarkers of ED and LGI.

Conclusions: In individuals with CKD5-ND, higher levels of serum AGEs and serum dicarbonyls were related to biomarkers of ED and LGI after adjustment for age, sex and diabetes mellitus. Correlations were attenuated by eGFR, suggesting that eGFR confounds and/or mediates the relation of serum AGEs and dicarbonyls with ED and LGI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6692010PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0221058PLOS

Publication Analysis

Top Keywords

ages dicarbonyls
16
serum ages
16
biomarkers lgi
12
serum dicarbonyls
12
serum
9
advanced glycation
8
glycation endproducts
8
dicarbonyls
8
dicarbonyls endothelial
8
endothelial dysfunction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!