Background: Aberrant expression of RNA processing genes may drive the alterative RNA profile in lower-grade gliomas (LGGs). Thus, we aimed to further stratify LGGs based on the expression of RNA processing genes.

Methods: This study included 446 LGGs from The Cancer Genome Atlas (TCGA, training set) and 171 LGGs from the Chinese Glioma Genome Atlas (CGGA, validation set). The least absolute shrinkage and selection operator (LASSO) Cox regression algorithm was conducted to develop a risk-signature. The receiver operating characteristic (ROC) curves and Kaplan-Meier curves were used to study the prognosis value of the risk-signature.

Results: Among the tested 784 RNA processing genes, 276 were significantly correlated with the OS of LGGs. Further LASSO Cox regression identified a 19-gene risk-signature, whose risk score was also an independently prognosis factor (P<0.0001, multiplex Cox regression) in the validation dataset. The signature had better prognostic value than the traditional factors "age", "grade" and "WHO 2016 classification" for 3- and 5-year survival both two datasets (AUCs > 85%). Importantly, the risk-signature could further stratify the survival of LGGs in specific subgroups of WHO 2016 classification. Furthermore, alternative splicing events for genes such as EGFR and FGFR were found to be associated with the risk score. mRNA expression levels for genes, which participated in cell proliferation and other processes, were significantly correlated to the risk score.

Conclusions: Our results highlight the role of RNA processing genes for further stratifying the survival of patients with LGGs and provide insight into the alternative splicing events underlying this role.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777941PMC
http://dx.doi.org/10.1172/jci.insight.130591DOI Listing

Publication Analysis

Top Keywords

rna processing
20
processing genes
16
expression rna
8
genome atlas
8
lasso cox
8
cox regression
8
risk score
8
alternative splicing
8
splicing events
8
rna
7

Similar Publications

Systemic lupus erythematosus (SLE) is an autoimmune disease with complex clinical manifestations and no current cure. Alternative splicing (AS) plays a key role in SLE by regulating immune-related genes, but its genome-wide regulatory mechanisms remain unclear. To investigate the involvement of abnormal splicing regulators and AS events in the immune regulation of SLE.

View Article and Find Full Text PDF

The motor neuron disease amyotrophic lateral sclerosis (ALS) is a devastating condition with limited treatment options. The past few years have witnessed a ramping up of translational ALS research, offering the prospect of disease-modifying therapies. Although breakthroughs using gene-targeted approaches have shown potential to treat patients with specific disease-causing mutations, the applicability of such therapies remains restricted to a minority of individuals.

View Article and Find Full Text PDF

Objective: To investigate the effect of different isoforms of on the proliferation of multiple myeloma (MM) cells after alternative splicing mediated by splicing factor .

Methods: RT-PCR was used to detect the expression levels of mRNA splicing isoforms regulated by . The GEO database was used to analyze the changes of isoform 1 in the progression of plasma cell disease, and survival analysis was used to evaluate the value of this gene in the prognosis of MM patients.

View Article and Find Full Text PDF

The Conference 2024 provides a platform to promote the development of an innovative scientific research ecosystem for microbiome and One Health. The four key components - Technology, Research (Biology), Academic journals, and Social media - form a synergistic ecosystem. Advanced technologies drive biological research, which generates novel insights that are disseminated through academic journals.

View Article and Find Full Text PDF

Atherosclerosis is a chronic inflammatory disease characterized by persistent inflammatory responses throughout all stages of its progression. Modulating these inflammatory responses is a promising avenue for the development of cardiovascular disease therapies. Splicing events modulate gene expression and diversify protein functionality, exerting pivotal roles in the inflammatory mechanisms underlying atherosclerosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!