3D Columnar Phase of Stacked Short DNA Organized by Coherent Membrane Undulations.

Langmuir

Materials Department, Physics Department, Molecular, Cellular, and Developmental Biology Department , University of California-Santa Barbara, Santa Barbara , California 93106 , United States.

Published: September 2019

We report on the discovery of a new organized lipid-nucleic acid phase upon intercalation of blunt duplexes of short DNA (sDNA) within cationic multilayer fluid membranes. End-to-end interactions between sDNA leads to columnar stacks. At high membrane charge density, with the inter-sDNA column spacing () comparable but larger than the diameter of sDNA, a 2D columnar phase (i.e., a 2D smectic) is found similar to the phase in cationic liposome-DNA complexes with long lambda-phage DNA. Remarkably, with increasing as the membrane charge density is lowered, a transition is observed to a 3D columnar phase of stacked sDNA. This occurs even though direct DNA-DNA electrostatic interactions across layers are screened by diffusing cationic lipids near the phosphate groups of sDNA. Softening of the membrane bending rigidity (κ), which further promotes membrane undulations, significantly enhances the 3D columnar phase. These observations are consistent with a model by Schiessel and Aranda-Espinoza where local membrane undulations, due to electrostatically induced membrane wrapping around sDNA columns, phase lock from layer-to-layer, thereby precipitating coherent "crystal-like" undulations coupled to sDNA columns with long-range position and orientation order. The finding that this new phase is stable at large and enhanced with decreasing κ is further supportive of the model where the elastic cost of membrane deformation per unit area around sDNA columns (∝ κ/, = sum of square of amplitudes of the inner and outer monolayer undulations) is strongly reduced relative to the favorable electrostatic attractions of partially wrapped membrane around sDNA columns. The findings have broad implications in the design of membrane-mediated assembly of functional nanoparticles in 3D.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6743479PMC
http://dx.doi.org/10.1021/acs.langmuir.9b01726DOI Listing

Publication Analysis

Top Keywords

columnar phase
16
sdna columns
16
membrane undulations
12
membrane
9
sdna
9
phase stacked
8
short dna
8
membrane charge
8
charge density
8
phase
7

Similar Publications

Laser powder bed fusion (LPBF)-fabricated Ni-based alloys with high γ' phase fractions generally suffer from cracking that limits their applications. This study presents SD247, a novel alloy that overcomes the challenge of cracking issues and exhibits superior mechanical properties after heat treatment. Compared to CM247LC, SD247 exhibited a lower cracking tendency due to alloying element modification.

View Article and Find Full Text PDF

Columnar Mesophases and Organogels Formed by H-Bound Dimers Based on 3,6-Terminally Difunctionalized Triphenylenes.

Gels

December 2024

Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.

A series of triphenylene (TP) compounds-denoted 3,6-THTP-DiCOH-bearing four hexyloxy ancillary chains and two variable-length alkoxy chains terminally functionalized with hydroxyl groups have been synthesized and characterized. The shorter homologs revealed mesogenic characteristics, giving rise to thermotropic mesophases in which π-stacked columns of H-bound dimers self-organize yielding superstructures. Molecular-scale models are proposed to account for their structural features.

View Article and Find Full Text PDF

We investigate the impact of poly adenine (poly-A) sequences on the type and stability of liquid crystalline (LC) phases formed by concentrated solutions of gapped DNA (two duplex arms bridged by a flexible single strand) using synchrotron small-angle X-ray scattering and polarizing optical microscopy. While samples with mixed sequence form layered (smectic) phases, poly-A samples demonstrate a columnar phase at lower temperatures (5-35 °C), not previously observed in GDNA samples, and a smectic-B phase of exceptional stability at higher temperatures (35-65 °C). We present a model that connects the formation of these LC phases with the unique characteristics of poly-A sequences, which manifest in various biological contexts, including DNA condensation and nucleosome formation.

View Article and Find Full Text PDF

In this article we describe research on the synthesis and characterization of a family of "Janus" amphiphiles composed of disaccharide head groups and alkaloid units joined together via a methylene linker, and bearing a lateral aliphatic chain of varying length. The condensed phases formed by self-organization of the products as a function of temperature were characterized by differential scanning calorimetry, thermal polarized light microscopy, and small angle X-ray scattering, allied with computational modelling and simulations. Structural studies on heating specimens from the solid showed that some homologues exhibited lamellar, columnar and bicontinuous mesophases, whereas the same homologues revealed different phase sequences on cooling from the amorphous liquid.

View Article and Find Full Text PDF

In this study, TaO was obliquely deposited on a polymer grating, resulting in a nanostructured thin film (NTF) with pronounced anisotropic optical properties. We measured and compared the principal indices and principal axes orientations of NTFs grown on both a grating and a smooth glass substrate. By adjusting the deposition angle, we observed a significant variation in the columnar angle and principal indices of the NTF on the grating, compared to the NTF on a smooth surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!