Highly conductive, metal-like poly(ethylene terephthalate) (PET) nonwoven fabric was prepared by coating poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) containing dimethyl sulfoxide (DMSO) onto PET nonwoven fabric previously coated with graphene/graphite. The sheet resistance of the original nonwoven fabric decreases from >80 MΩ□ to 1.1 Ω□ after coating with 10.7 wt % graphene and 5.48 wt % PEDOT:PSS with a maximum current at breakdown of 4 A. This sheet resistance is lower than previously reported sheet resistances of fabrics coated with graphene films, PEDOT:PSS films, or PEDOT:PSS coated fabrics from the literature. The effect of temperature on the resistance of graphene/PEDOT:PSS coated fabric has revealed that the resistance decreases with increasing temperature, analogous to semiconductors, with a clear occurring at 290 K. Finally, a coating of 18 wt % graphene/graphite and 2.5 wt % PEDOT:PSS (R = 5.5 Ω□) screen printed on the nonwoven fabric was shown to function as an electrode for electrocardiography without any hydrogel and with dry skin conditions. This composite coating finds application in wearable electronics for military and consumer sectors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b05379DOI Listing

Publication Analysis

Top Keywords

nonwoven fabric
20
pet nonwoven
8
sheet resistance
8
films pedotpss
8
fabric
6
nonwoven
5
pedotpss
5
graphene poly34-ethylene
4
poly34-ethylene dioxythiophenepoly4-styrenesulfonate
4
dioxythiophenepoly4-styrenesulfonate nonwoven
4

Similar Publications

Article Synopsis
  • Recent research highlights the potential of polyhydroxyalkanoates (PHAs), especially poly(3-hydroxybutyrate) (P3HB), for creating fine fiber nonwoven structures, with fiber diameters ranging from 2.5 µm to 20 µm through the meltblow process.
  • The study identifies limitations in existing PHA fabrics, such as brittleness and low flexibility, but shows how advancements in their processing can lead to stable three-dimensional nonwoven parts.
  • It also reveals that the PHA copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) demonstrates improved elongation properties and resilience compared to P3HB, especially
View Article and Find Full Text PDF

This study explores the fabrication of electret nonwoven structures for high-efficiency air filtration, utilizing the blow spinning technique. In response to the growing need for effective filtration systems, we aimed to develop biodegradable materials capable of capturing fine particulate matter (PM2.5) without compromising environmental sustainability.

View Article and Find Full Text PDF

Enhancing visible light degradation of gaseous formaldehyde with CuO/OVs-TiO photocatalyst loaded wallpaper: Preparation, efficacy and mechanism.

Chemosphere

January 2025

Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China. Electronic address:

Photocatalytic oxidation is considered to be a highly promising technology for indoor formaldehyde (HCHO) abatement. However, powdered photocatalysts encounter practical challenges due to their recycling difficulties and propensity for aggregation. In this study, we developed a CuO/OVs-TiO photocatalyst dispersion using various physical and chemical methods, which could be stabilized for an extended period.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a radiative cooling textile (PAC@T) inspired by flamingo feathers, using polyacrylonitrile and alumina particles to enhance cooling and comfort.
  • PAC@T achieves high solar reflectance (95%) and mid-infrared emissivity (91.8%), resulting in effective cooling that is 6.1°C cooler than traditional textiles.
  • The textile is made from common materials and offers advantages like durability and energy-free operation, posing significant potential for future industrial applications in personal thermoregulation.
View Article and Find Full Text PDF

Background: A biodegradable nonwoven fabric that can be used to extract adipose-derived stem cells (ADSCs) from adipose tissue slices was developed, which were cultured rapidly without enzymatic treatment. The extracted and cultured ADSCs remain on the nonwoven fabric and form a thick cell sheet. The aim was to use the thick cell sheet as a treatment by transplanting it into the living body.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!