PbSe Quantum Dots Sensitized High-Mobility BiOSe Nanosheets for High-Performance and Broadband Photodetection Beyond 2 μm.

ACS Nano

State Key Laboratory of Material Processing and Die and Mould Technology, School of Material Sciences and Engineering , Huazhong University of Science and Technology, Wuhan 430074 , China.

Published: August 2019

As an emerging two-dimensional semiconductor, BiOSe has recently attracted broad interests in optoelectronic devices for its superior mobility and ambient stability, whereas the diminished photoresponse near its inherent indirect bandgap (0.8 eV or λ = 1550 nm) severely restricted its application in the broad infrared spectra. Here, we report the BiOSe nanosheets based hybrid photodetector for short wavelength infrared detection up to 2 μm PbSe colloidal quantum dots (CQDs) sensitization. The type II interfacial band offset between PbSe and BiOSe not only enhanced the device responsivity compared to bare BiOSe but also sped up the response time to ∼4 ms, which was ∼300 times faster than PbSe CQDs. It was further demonstrated that the photocurrent in such a zero-dimensional-two-dimensional hybrid photodetector could be efficiently tailored from a photoconductive to photogate dominated response under external field effects, thereby rendering a sensitive infrared response >10 A/W at 2 μm. The excellent performance up to 2 μm highlights the potential of field-effect modulated BiOSe-based hybrid photodetectors in pursuing highly sensitive and broadband photodetection.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.9b03124DOI Listing

Publication Analysis

Top Keywords

quantum dots
8
biose nanosheets
8
broadband photodetection
8
hybrid photodetector
8
biose
5
pbse
4
pbse quantum
4
dots sensitized
4
sensitized high-mobility
4
high-mobility biose
4

Similar Publications

Mixing different metal ions at the B site of ABX perovskites offers a promising approach for addressing challenges related to toxicity, stability and performance in optoelectronic applications. One such example is CsPbSnBr which addresses the toxicity issue posed by lead while allowing us to tune optoelectronic properties such as the band gap. In this work, nearly monodisperse CsPbSnBr quantum dots (QDs) were synthesized with variable Pb/Sn compositions, CsPbBr, CsPbSnBr and CsPbSnBr.

View Article and Find Full Text PDF

This study explores the optoelectronic and photovoltaic potential of acceptor-π-donor (A-π-D) architectures utilizing CSi quantum dots (CSiQDs) through a combination of density functional theory (DFT) and time-dependent DFT (TDDFT). We examined two key structural configurations: C-C and Si-C conformers. In these systems, CSiQDs serve as the acceptor, CHSF as the π-bridge, and 3 × (CHO) as the donor.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) have attracted significant attention in recent years due to its environment friendly characteristics and its participation in the multi-heteroatom doping of carbon quantum dots (CQDs). In this work, we present a simple, fast, and environment-friendly microwave synthesis approach for the synthesis of DES-assisted nitrogen and chloride co-doped CQDs (N,Cl-CQDs) using a choline chloride-urea based DES. A biomass-based precursor, i.

View Article and Find Full Text PDF

Optical Properties of Phenylthiolate-Capped CdS Nanoparticles.

J Phys Chem C Nanomater Interfaces

January 2025

Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.

Using many-body perturbation theory, we study the optical properties of phenylthiolate-capped cadmium sulfide nanoparticles to understand the origin of the experimentally observed blue shift in those properties with decreasing particle size. We show that the absorption spectra predicted by many-body perturbation theory agree well with the experimentally measured spectra. The results of our calculations demonstrate that all low-energy excited states correspond to a mixture of two fundamental types of excitations: intraligand and ligand-to-metal charge-transfer excitations.

View Article and Find Full Text PDF

Carbohydrate-functionalized quantum dots exhibit excellent physical characteristics and enhance the steric interaction with biological cells and tissues. Glycoconjugation of quantum dots promotes aqueous solubility, stability, and reduced immunogenicity. Carbohydrate-protein interactions are involved in various vital processes and provide insight into cellular recognition, cell-to-cell communication, pathogenicity, antigen-antibody recognition, and enzymatic action.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!