Objective: Vaccination therapy using tumour antigen-loaded, autologous dendritic cells (DC) is a promising therapeutic approach alongside standard treatment for glioblastoma (GBM). However, reliable diagnostic criteria regarding therapy monitoring are not established. Here, we analysed the impact of additional F-fluoroethyl-tyrosine positron emission tomography (F-FET PET) imaging following DC vaccination therapy.
Methods: We analysed data of GBM patients who received DC vaccination therapy. Following MRI diagnosis of tumour recurrence, additional static and dynamic F-FET PET imaging was performed. Vaccination was performed five times by intradermal injections, either weekly between concomitant radio/-chemotherapy and intermittent chemotherapy or after tumour recurrence, before re-radiation therapy. MRI and F-FET PET results were compared and correlated with clinical data.
Results: Between 2003 and 2016, 5 patients were identified who received DC vaccination and F-FET PET imaging (1 female/4 males; mean age: 44 ± 14 y). 3/5 patients showed congruent results of tumour progression. In three patients F-FET PET indicated treatment related changes, which was in contrast to MRI findings that indicated tumour progression. In these patients F-FET PET results could be confirmed by either neuropathological diagnosis or according to the RANO criteria.
Conclusions: Despite the small patients number our results indicate an additional impact of F-FET PET for monitoring outcome following vaccination therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02688697.2019.1639615 | DOI Listing |
Mol Imaging Biol
January 2025
Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany.
Purpose: In addition to rodent models, the chick embryo model has gained attention for radiotracer evaluation. Previous studies have investigated tumours on the chorioallantoic membrane (CAM), but its value for radiotracer imaging of intracerebral tumours has yet to be demonstrated.
Procedures: Human U87 glioblastoma cells and U87-IDH1 mutant glioma cells were implanted into the brains of chick embryos at developmental day 5.
J Nucl Med
January 2025
Institute of Neuroscience and Medicine (INM-3/INM-4/INM-5/INM-11), Forschungszentrum Jülich, Jülich, Germany.
One of the most common clinical indications for amino acid PET using the tracer -(2-[F]-fluoroethyl)-l-tyrosine (F-FET) is the differentiation of tumor relapse from treatment-related changes in patients with gliomas. A subset of patients may present with an uptake of F-FET close to recommended threshold values. The goal of this study was to investigate the frequency of borderline cases and the role of quantitative F-FET PET parameters in this situation.
View Article and Find Full Text PDFZh Vopr Neirokhir Im N N Burdenko
December 2024
Burdenko Neurosurgical Center, Moscow, Russia.
Unlabelled: The development of new drugs in nuclear medicine for diagnosis or treatment (chemotherapy) of brain tumors, in particular gliomas, is inextricably linked with the use of tumor models in animals (usually rats).
Objective: To compare the widely used glioma cell model C6 and the new experimental tissue model of glioblastoma 101.8.
Neurooncol Adv
November 2024
Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.
Background: Magnetic resonance imaging (MRI) cerebral blood volume (CBV) measurements improve the diagnosis of recurrent gliomas. The study investigated the prognostic value of dynamic contrast-enhanced (DCE) CBV imaging in treated IDH wildtype glioblastoma when added to MRI or amino acid positron emission tomography (PET).
Methods: Hybrid [F]FET PET/MRI with 2CXM (2-compartment exchange model) DCE from 86 adult patients with suspected recurrent or residual glioblastoma were retrospectively analyzed.
Neurooncol Adv
October 2024
Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.
Background: In the present study, early response assessment by o-(2-[F]fluoroethyl)-l-tyrosine (FET) positron emission tomography (PET) and contrast-enhanced magnetic resonance imaging (MRI) were investigated in a phase II open-label single-center study of nivolumab plus bevacizumab for recurrent high-grade astrocytic glioma.
Methods: Twenty patients with nonresectable first recurrence of high-grade astrocytic glioma after EORTC/NCIC protocol underwent [F]FET PET/MRI at baseline and after 2 cycles of treatment. Whole brain values of contrast-enhancing volume on MRI (CEV), of the mean (TBR) and maximal tumor-to-background ratio (TBR), and of metabolically active volume (MTV) on [F]FET PET were obtained.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!