Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Studtite, [UO(η-O)(HO)]·2HO, and metastudtite, [UO(η-O)(HO)], are important phase alterations of UO in a spent nuclear fuel repository and have previously been shown to react with Np(v). In this work we extend the study to Am(v) on a tracer scale and show spectroscopic evidence that the Am is incorporated into the structure of studtite as Am(iii). A computational study on the possible mechanisms for the incorporation of Np and Am shows that protonation of the -yl oxygen is the favoured route and the calculated incorporation energies are large and positive. The results suggest that Am is less favoured compared to Np but energetically more favoured to incorporate both actinide ions into metastudtite rather than studtite. Finally, we have shown that once incorporated, Am readily leaches into water but spectroscopic measurements suggest subtle changes in the structure of studtite.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9dt02848j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!