The Synergistic Effect of a Bimetallic Catalyst for the Synthesis of Carbon Nanotube Aerogels and their Predominant Chirality.

Chemistry

Ceramic Fiber & Composite Center, Korea Institute of Ceramic Engineering & Technology, 101 Soho-ro, Jinju-si, Gyeongsangnam-do, 52851, Republic of Korea.

Published: October 2019

Synthesis of continuous spinnable carbon nanotube (CNT) fibers is the most promising method for producing CNT fibers for commercial applications. The floating-catalyst chemical vapor deposition (FC-CVD) method is a rapid process that achieves catalyst formation, CNT nucleation and growth, and aerogel-like sock formation within a few seconds. However, the formation mechanism is unknown. Herein, the progress of CNT fiber formation with bimetallic catalysts was studied, and the effect of catalyst composition to CNT fiber synthesis and their structural properties was investigated. In the case of bimetallic catalysts, the carbon source rapidly decomposes and generates various secondary hydrocarbon species, such as CH , C H , C H , C H , and C H whereas monometallic catalysts generate only CH and C H on decomposition. CNT fiber formation with Fe Ni begins about 400 mm from the reactor entrance, whereas CNT formation with Fe Ni and Fe Ni begins at about 500 and 300 mm, respectively. The formed CNT bundles and individual CNTs are oriented along the gas flow at these locations. The enhanced rate of fiber formation and lowering of growth temperature associated with bimetallic catalysts is explained by the synergistic effects between the two metals. The synthesized CNTs become predominantly semiconducting with increasing Ni contents.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201903273DOI Listing

Publication Analysis

Top Keywords

cnt fiber
12
fiber formation
12
bimetallic catalysts
12
carbon nanotube
8
cnt
8
cnt fibers
8
formation
7
synergistic bimetallic
4
bimetallic catalyst
4
catalyst synthesis
4

Similar Publications

Article Synopsis
  • The study explores the impact of different carbon nanostructure reinforcements and nitinol shape memory alloy (SMA) wire on the vibration behavior of a five-layer sandwich plate with a foam core, aiming to optimize stiffness and weight for sensitive industries.
  • It highlights how various reinforcements like carbon nanotubes, nanorods, and graphene platelets can significantly enhance the mechanical properties, with graphene showing the most substantial improvement in Young's modulus.
  • The research also introduces a novel construction method for the five-layer model using a vacuum pump, offering a more efficient alternative to traditional manual methods and facilitating a thorough experimental examination of its properties.
View Article and Find Full Text PDF

MXene exhibits exceptional electrical and electrochemical properties, and is regarded as a promising candidate for future wearable electronic products. However, achieving a balance between flexibility and capacitance performance in MXene-based fiber supercapacitors remains a challenge. Here, MXene/Thermoplastic polyurethane (TPU) composite fibers with good conductivity and tensile properties, were prepared by wet spinning method.

View Article and Find Full Text PDF

Shape Memory Characteristics of Injection Molded Poly(lactic acid) Multiscale Hybrid Composites.

ACS Omega

November 2024

Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.

In this study, we showed that hybrid reinforcement-a combination of nanoparticles and fibers-can provide more effective reinforcement for increasing the recovery stress of a shape memory polymer (SMP) than using either filler individually. We mixed carbon fibers (CF) and carbon nanotubes (CNT) into a poly(lactic acid) (PLA) matrix on a twin-screw extruder and injection molded specimen from the hybrid composite. Subsequently, some of the specimens were subjected to crystallizing heat treatment, while others were kept as molded to study the effects of crystallinity as well.

View Article and Find Full Text PDF

Lightweight aggregate concrete can reduce the self-weight of a structure with a low unit weight; however, disadvantages such as reduced strength and brittleness remain. This study evaluated the thermal and mechanical properties of lightweight aggregate cement mortars containing carbon nanotubes (CNTs) and amorphous metallic fibers (AMFs). A thermal property test indicated that the peak temperature of the C1A1 and C1A2 samples using AMFs was approximately 91.

View Article and Find Full Text PDF

In this study, we present a novel combination of carbon nanotubes (CNT), widely used as a sorbent material in solid-phase extraction-based methodologies, with polybenzimidazole (PBI), recently introduced as a universal binder for physical immobilization of sorbent particles. This combination was used to prepare CNT-PBI coated solid-phase microextraction (SPME) devices (fibers, arrows, and blades) suitable for both thermal and solvent desorption. The resulting CNT-PBI SPME devices presented excellent mechanical resistance and high thermal stability, capable of enduring multiple thermal desorption cycles without compromising extraction efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!