Synthesis of continuous spinnable carbon nanotube (CNT) fibers is the most promising method for producing CNT fibers for commercial applications. The floating-catalyst chemical vapor deposition (FC-CVD) method is a rapid process that achieves catalyst formation, CNT nucleation and growth, and aerogel-like sock formation within a few seconds. However, the formation mechanism is unknown. Herein, the progress of CNT fiber formation with bimetallic catalysts was studied, and the effect of catalyst composition to CNT fiber synthesis and their structural properties was investigated. In the case of bimetallic catalysts, the carbon source rapidly decomposes and generates various secondary hydrocarbon species, such as CH , C H , C H , C H , and C H whereas monometallic catalysts generate only CH and C H on decomposition. CNT fiber formation with Fe Ni begins about 400 mm from the reactor entrance, whereas CNT formation with Fe Ni and Fe Ni begins at about 500 and 300 mm, respectively. The formed CNT bundles and individual CNTs are oriented along the gas flow at these locations. The enhanced rate of fiber formation and lowering of growth temperature associated with bimetallic catalysts is explained by the synergistic effects between the two metals. The synthesized CNTs become predominantly semiconducting with increasing Ni contents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201903273 | DOI Listing |
Heliyon
May 2024
Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, P.O. Box 87317-53153, Iran.
J Colloid Interface Sci
December 2024
School of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
MXene exhibits exceptional electrical and electrochemical properties, and is regarded as a promising candidate for future wearable electronic products. However, achieving a balance between flexibility and capacitance performance in MXene-based fiber supercapacitors remains a challenge. Here, MXene/Thermoplastic polyurethane (TPU) composite fibers with good conductivity and tensile properties, were prepared by wet spinning method.
View Article and Find Full Text PDFACS Omega
November 2024
Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
In this study, we showed that hybrid reinforcement-a combination of nanoparticles and fibers-can provide more effective reinforcement for increasing the recovery stress of a shape memory polymer (SMP) than using either filler individually. We mixed carbon fibers (CF) and carbon nanotubes (CNT) into a poly(lactic acid) (PLA) matrix on a twin-screw extruder and injection molded specimen from the hybrid composite. Subsequently, some of the specimens were subjected to crystallizing heat treatment, while others were kept as molded to study the effects of crystallinity as well.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Architectural Engineering, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea.
Lightweight aggregate concrete can reduce the self-weight of a structure with a low unit weight; however, disadvantages such as reduced strength and brittleness remain. This study evaluated the thermal and mechanical properties of lightweight aggregate cement mortars containing carbon nanotubes (CNTs) and amorphous metallic fibers (AMFs). A thermal property test indicated that the peak temperature of the C1A1 and C1A2 samples using AMFs was approximately 91.
View Article and Find Full Text PDFAnalyst
December 2024
Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
In this study, we present a novel combination of carbon nanotubes (CNT), widely used as a sorbent material in solid-phase extraction-based methodologies, with polybenzimidazole (PBI), recently introduced as a universal binder for physical immobilization of sorbent particles. This combination was used to prepare CNT-PBI coated solid-phase microextraction (SPME) devices (fibers, arrows, and blades) suitable for both thermal and solvent desorption. The resulting CNT-PBI SPME devices presented excellent mechanical resistance and high thermal stability, capable of enduring multiple thermal desorption cycles without compromising extraction efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!