Acid- and pepsin-soluble collagen were purified from the skin of mahi mahi (mmASC and mmPSC). The Pro+Hyp content of the latter (185/1,000 residues) was highest among all marine teleost fishes. Fourier transform infrared spectroscopy and Circular Dichroism (CD) analysis showed the typical structure of type I collagen. The ratio of positive over negative peak intensity calculated from the CD spectrum was approximately 1.19 in mmPSC, which is remarkably high, and indicates the stability of the triple helix. The denaturation temperatures (T ) of mmASC and mmPSC were the highest (29.5 and 28.8°C, respectively) among the marine teleost fishes previously studied. atomic force microscope and scanning electron microscope images showed that even after pretreatment, the fibrils presented their structure and fiber orientation. These results indicate the robustness of both collagens, which can be attributed to the high value of Pro+Hyp stabilizing the helix structure of the collagen molecule. Practical applications While Mahi mahi is highly valuable for its meat, other parts such as skin is not fully utilized in seafood industry. On the contrary, it has been empirically shown that the skin of Mahi mahi has high thermal stability, thus, the skin has been used for leather products in some areas located in the tropical and subtropical zones. In this study, we focused on collagen a major component in skin and investigated the structure and the biochemical characteristics of it. Some results showed that collagen from skin has high physical stability. The collagen from skin of Mahi mahi will be a new fishery resource which could be used as a material for collagen products.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfbc.13013DOI Listing

Publication Analysis

Top Keywords

mahi mahi
20
skin mahi
12
mahi
10
collagen
8
type collagen
8
collagen purified
8
skin
8
purified skin
8
physical stability
8
mmasc mmpsc
8

Similar Publications

The current investigation assessed the beneficial impacts of dietary sodium chloride (NaCl) on the growth performance, oxidant/antioxidant, and immune responses of Nile tilapia (Oreochromis niloticus) and its adaptability to different salinity levels. After acclimating the fish to the laboratory conditions for 2 weeks, the acclimated fish (10.5 ± 0.

View Article and Find Full Text PDF

Given the challenges of overcrowded coastal aquaculture spaces and insufficient production, utilizing saline-alkaline water areas represents a vital strategy to alleviate these bottlenecks. Spotted sea bass (Lateolabrax maculatus), with its formidable osmoregulatory capabilities, is an ideal candidate to develop a saline-alkaline tolerant strain. In our study, genotypic and phenotypic data from 287 L.

View Article and Find Full Text PDF

Primordial germ cells (PGCs), the progenitors of gametes, are essential for teleost reproduction. While their formation is conserved across teleosts, the activation, migration routes, and localization periods vary among species. In this study, we developed a novel transgenic line, Tg(ddx4:TcCFP13-nanos3), based on the Nile tilapia genome, to label PGCs with clear fluorescent signals in the freshwater angelfish (Pterophyllum scalare).

View Article and Find Full Text PDF

Relationship between physicochemical properties, non-volatile substances, and microbial diversity during the processing of dry-cured Spanish mackerel.

Food Res Int

January 2025

Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China. Electronic address:

To meet the demand of consumers for high-quality dry-cured fish. This study investigates the relationship between microbial diversity and the changes in physicochemical properties and non-volatile flavor compounds of dry-cured Spanish mackerel (DCSM) throughout the curing process. Our findings demonstrate that moisture content significantly decreased during curing, while NaCl generally increased.

View Article and Find Full Text PDF

Iron oxide nanoparticles, recognized for their superparamagnetic properties, are promising for future healthcare therapies. However, their extensive use in medicine and electronics contributes to their discharge into our environments, highlighting the need for further research on their cellular damage effects on aquatic organisms. While the detrimental properties of other compounds have been stated in the early-life stages of fish, the cytotoxic consequences of superparamagnetic iron oxide nanoparticles (SPIONs) in these stages are still unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!