Methylation of RNA is normally monitored in purified cell lysates using next-generation sequencing, gel electrophoresis, or mass spectrometry as readouts. These bulk methods require the RNA from ~10 to 10 cells to be pooled to generate sufficient material for analysis. Here we describe a method-methylation-sensitive RNA in situ hybridization (MR-FISH)-that assays rRNA methylation in bacteria on a cell-by-cell basis, using methylation-sensitive hybridization probes and fluorescence microscopy. We outline step-by-step protocols for designing probes, in situ hybridization, and analysis of data using freely available code.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9674-2_7DOI Listing

Publication Analysis

Top Keywords

rrna methylation
8
methylation bacteria
8
situ hybridization
8
imaging rrna
4
bacteria mr-fish
4
mr-fish methylation
4
methylation rna
4
rna monitored
4
monitored purified
4
purified cell
4

Similar Publications

Molecular identification of species from pneumonic goats, Iraq.

Open Vet J

November 2024

Department of Internal and Preventive Veterinary Medicine, College of Veterinary Medicine, University of Wasit, Wasit, Iraq.

Background: In goats, acute and chronic respiratory infections are often characterized by a rapidly progressing clinical course with little opportunity to develop an effective antibiotic therapy.

Aim: This study aimed to identify spp. in pneumonic goats, assess its antibiotic susceptibility, and confirm the molecular phylogenetics of spp.

View Article and Find Full Text PDF

Biotransformation analysis of daidzin in vitro based on fecal bacteria and probiotics.

J Pharm Biomed Anal

December 2024

Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing 100010, China. Electronic address:

Daidzin, as one of isoflavone glycosides, has been reported to have multiple activities with few absorbed into body. However, the metabolic behavior of daidzin by intestinal flora has not been researched, that this defect severely constrains its applications. In this study, daidzin and its metabolites were qualitatively and quantitatively analyzed by HPLC and ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) in the fermentation system for daidzin and fecal bacteria.

View Article and Find Full Text PDF

Sulfate-driven anaerobic oxidation of methane (AOM) and anaerobic digestion (AD) with municipal wastewater sludge containing heavy metals may provide favorable conditions for the biogeochemical transformation of mercury (Hg) by methanogens and methanotrophs. However, it remains largely unclear what Hg-methylators functioned and what role Methanosarcina played in these processes. Here, we performed sulfate-driven AOM following AD with Hg-containing wastewater sludge and investigated the role of microbes, especially Methanosarcina, in the biogeochemical transformation of Hg based on 16S rRNA amplicon and metatranscriptomic sequencing.

View Article and Find Full Text PDF

This study investigates the biodegradation of methyl parathion, an organophosphate pesticide used in paddy fields. Microbial degradation transforms toxic pesticides into less harmful compounds, influenced by the microbial community in the soil. To isolate different microbial colonies, soil samples from an organophosphorus-treated groundnut field were plated on nutrient agar and MSM with 1% glucose and 0.

View Article and Find Full Text PDF

Interaction between host genotoxic changes and mucosa-associated microbiome (MAM) dysbiosis may have a role in various digestive cancers. We investigated MAM in Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC) progression sequence and its association with host genotoxic changes. 16S rRNA gene sequencing was performed in three different groups of biopsies from nonneoplastic BE from patients without cancer (N, normal group; n = 47) and with EAC (ADJ, adjacent group; n = 27).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!