AI Article Synopsis

  • There are three types of fat cells in dogs: white adipocytes store energy as fat, while brown/beige adipocytes help burn energy.
  • The study examined the gene expression levels related to fat storage and function in 29 hospitalized dogs to understand obesity-related genes.
  • Key findings include that body condition score was linked to a dog’s age rather than fat gene expression, and certain BMP receptor expressions were correlated, indicating complex relationships in fat cell development.

Article Abstract

There are three kinds of adipocytes; white adipocytes accumulate excess energy as fat, whereas brown/beige adipocytes dissipate energy through expression of uncoupling protein 1 (UCP1). Obesity, a feature of excess accumulation of white adipocytes in a body, is one of the risk factors for onset of various diseases in dogs. As the first step to explore adipose genes related to dog obesity, we examined relationships among mRNA levels of putative molecules related to adipogenesis and function of adipocytes in fat of hospitalized dogs. Gonadal adipose tissues were collected from a total of 29 dogs, and the gene expression levels were examined by quantitative RT-PCR analysis. The multicollinearity analysis revealed that body condition score (BCS), which reflects adiposity, did not correlate with expression levels of any genes but correlated with age of dog. Bone morphogenetic protein (BMP) pathway stimulates not only commitment of mesenchymal stem cells to white adipocyte-lineage cells but also brown/beige adipogenesis. Some relationships between expression levels of BMP receptors were significant; especially, expression levels of activin receptor-like kinase (Alk) 3 (a BMP type I receptor) positively related to those of Alk2 (another BMP type I receptor), activin receptor type II (ActRII) A (a type II receptor to transmit BMP signal), ActRIIB (another type II receptor to transmit BMP signal) and BMP receptor type 2 (Bmpr2). PR domain containing 16 (Prdm16) expression levels strongly correlated with expression levels of ActRIIB. Although PRDM16 is known to stimulate brown/beige adipogenesis, expression levels of Ucp1 did not correlate with those of Prdm16. On the other hand, expression levels of Ucp1 correlated with those of Alk6. The present study suggests close relationships among adipose expressions of BMP signal components, and the relationships of expression levels of BMP receptor and those of Prdm16 or Ucp1 in dogs. Further studies using more dogs with various BCS potentially lead to identification of adipose factors to relate with adiposity in dogs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-019-04923-3DOI Listing

Publication Analysis

Top Keywords

expression levels
40
type receptor
16
relationships expression
12
bmp signal
12
levels
11
expression
10
bmp
9
levels genes
8
white adipocytes
8
brown/beige adipogenesis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!