Biomacromolecules with poor mechanical properties cannot satisfy the stringent requirement for load-bearing as bioscaffolds. Herein, a biodegradable high-strength supramolecular polymer strengthened hydrogel composed of cleavable poly(-acryloyl 2-glycine) (PACG) and methacrylated gelatin (GelMA) (PACG-GelMA) is successfully constructed by photo-initiated polymerization. Introducing hydrogen bond-strengthened PACG contributes to a significant increase in the mechanical strengths of gelatin hydrogel with a high tensile strength (up to 1.1 MPa), outstanding compressive strength (up to 12.4 MPa), large Young's modulus (up to 320 kPa), and high compression modulus (up to 837 kPa). In turn, the GelMA chemical crosslinking could stabilize the temporary PACG network, showing tunable biodegradability by adjusting ACG/GelMA ratios. Further, a biohybrid gradient scaffold consisting of top layer of PACG-GelMA hydrogel-Mn and bottom layer of PACG-GelMA hydrogel-bioactive glass is fabricated for repair of osteochondral defects by a 3D printing technique. In vitro biological experiments demonstrate that the biohybrid gradient hydrogel scaffold not only supports cell attachment and spreading but also enhances gene expression of chondrogenic-related and osteogenic-related differentiation of human bone marrow stem cells. Around 12 weeks after in vivo implantation, the biohybrid gradient hydrogel scaffold significantly facilitates concurrent regeneration of cartilage and subchondral bone in a rat model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6685475 | PMC |
http://dx.doi.org/10.1002/advs.201900867 | DOI Listing |
PLoS One
December 2024
Faculty of Engineering, Department of Chemical Engineering and Biotechnological Engineering, 3D Dynamic Cell Culture Systems Laboratory, Université de Sherbrooke, Sherbrooke, QC, Canada.
Glioblastoma multiforme (GBM) is the most prevalent malignant brain tumor, with an average survival time of 14 to 20 months. Its capacity to invade brain parenchyma leads to the failure of conventional treatments and subsequent tumor recurrence. Recent studies have explored new therapeutic strategies using a chemoattracting gradient to attract GBM cells into a soft hydrogel trap where they can be exposed to higher doses of radiation or chemotherapy.
View Article and Find Full Text PDFBioresour Technol
November 2024
College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China. Electronic address:
Photosynthetic biohybrid systems (PBSs) composed of semiconductor-microbial hybrids provide a novel approach for converting light into chemical energy. However, comprehending the intricate interactions between materials and microbes that lead to PBSs with high apparent quantum yields (AQY) is challenging. Machine learning holds promise in predicting these interactions.
View Article and Find Full Text PDFBio Protoc
August 2024
Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK, USA.
Microscale thermophoresis (MST) is a technique used to measure the strength of molecular interactions. MST is a -based technique that monitors the change in fluorescence associated with the movement of fluorescent-labeled molecules in response to a temperature gradient triggered by an IR LASER. MST has advantages over other approaches for examining molecular interactions, such as isothermal titration calorimetry, nuclear magnetic resonance, biolayer interferometry, and surface plasmon resonance, requiring a small sample size that does not need to be immobilized and a high-sensitivity fluorescence detection.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2024
Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
Living organisms inspire the design of microrobots, but their functionality is unmatched. Next-generation microrobots aim to leverage the sensing and communication abilities of organisms through magnetic hybridization, attaching magnetic particles to them for external control. However, the protocols used for magnetic hybridization are morphology specific and are not generalizable.
View Article and Find Full Text PDFAdv Mater
June 2024
State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
Organ-on-chips can highly simulate the complex physiological functions of organs, exhibiting broad application prospects in developmental research, disease simulation, as well as new drug research and development. However, there is still less concern about effectively constructing cochlea-on-chips. Here, a novel cochlear organoids-integrated conductive hydrogel biohybrid system with cochlear implant electroacoustic stimulation (EAS) for cochlea-on-a-chip construction and high-throughput drug screening, is presented.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!