The microscopic assessment of tissue samples is instrumental for the diagnosis and staging of cancer, and thus guides therapy. However, these assessments demonstrate considerable variability and many regions of the world lack access to trained pathologists. Though artificial intelligence (AI) promises to improve the access and quality of healthcare, the costs of image digitization in pathology and difficulties in deploying AI solutions remain as barriers to real-world use. Here we propose a cost-effective solution: the augmented reality microscope (ARM). The ARM overlays AI-based information onto the current view of the sample in real time, enabling seamless integration of AI into routine workflows. We demonstrate the utility of ARM in the detection of metastatic breast cancer and the identification of prostate cancer, with latency compatible with real-time use. We anticipate that the ARM will remove barriers towards the use of AI designed to improve the accuracy and efficiency of cancer diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-019-0539-7DOI Listing

Publication Analysis

Top Keywords

augmented reality
8
reality microscope
8
artificial intelligence
8
cancer diagnosis
8
cancer
5
microscope real-time
4
real-time artificial
4
intelligence integration
4
integration cancer
4
diagnosis microscopic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!