Treatment with selective catalytic oxidation (SCO) is an effective technology applied recently for conversion of nitrogen oxides pollution control. In order to solve the problems of high cost and difficulties in practical application of SCO catalyst, it was put forward using the solid waste sludge from soybean oil plant as catalyst carrier to prepare denitration catalyst. The sludge was treated by alkaline activation and then MnOx-based sludge was prepared by impregnation. Finally, MnOx-based sludge was calcined in the muffle furnace. The effects of activation and calcination conditions on catalyst activity were investigated. Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the activity of the sludge based denitration catalyst, and the structure and activity of the sludge based denitration catalyst were furtherly confirmed. According to the achieved results, (1) after activated by LiOH with a mass concentration of 15% for 4 hours, the surface of the sludge catalyst has more alkali functional groups, making the denitration of sludge catalyst the best; (2) the MnOx-based catalyst calcined in the muffle furnace with calcination temperature of 450 °C for 4 hours has obvious denitration efficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690868 | PMC |
http://dx.doi.org/10.1038/s41598-019-47947-2 | DOI Listing |
Environ Res
January 2025
Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, PR China. Electronic address:
Herein, a biochar-supported zero-valent iron (ZVI) nanosheet catalyst (Fe@BC) for the activation of persulfate to degrade ciprofloxacin (CIP) was prepared using industrial kraft lignin and Fenton sludge as carbon and iron sources, respectively. Fe@BC showed considerably better CIP degradation efficiency (96.9% at 20 mg L) than traditional catalysts.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan.
In the waste oil recycling industry, large amounts of oil-containing sludge are still generated, thus posing a resource depletion issue when disposed of or incinerated without energy recovery or residual oil utilization. In this work, chemical activation experiments using phosphoric acid (HPO) were performed at a low temperature (600 °C) for 30 min to produce porous carbon products. From the results of the pore property analysis, an increasing trend with an increasing impregnation ratio from 0.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Environmental Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
J Air Waste Manag Assoc
January 2025
Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, Vietnam.
This study explored the potential of electroplating sludge (ESs) as a novel and effective photocatalyst for the photodegradation of ciprofloxacin in aqueous solutions. The characterization of the ESs was evaluated using sophisticated techniques, such as XRD, SEM, TEM, EDX, FTIR, and BET. ESs-derived photocatalyst materials were found to primarily consist of various metal oxides (Ni-O, Cu-O), which can absorb ultraviolet or visible light.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
Here, the clever design of forming an ohmic contact between SnS and MXene can regulate interfacial electron transport through Ti-O-Sn chemical bonds. This fast directional charge transport kinetics is attributed to the built-in electric field formed by the ohmic contact. As expected, the photoreduction CO activity of the optimized SSTC-5 catalyst is 10.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!