AI Article Synopsis

  • Multidrug resistance (MDR) poses significant challenges in cancer treatment, but collateral sensitivity (CS) drugs like danazol offer a promising approach by selectively targeting MDR cancer cells.
  • Danazol displays stronger selective cytotoxicity against MDR cancer cells, causing them to halt in the G2/M phase of the cell cycle and triggering early apoptosis via a caspase-8 mechanism.
  • The drug inhibits the STAT3 signaling pathway, leading to reduced expression of survival genes (like c-Myc) and increased levels of the cell cycle inhibitor p21, suggesting that danazol could serve as a potential treatment for MDR cancers.

Article Abstract

Multidrug resistance presents an obstacle in cancer treatment. Among numerous combative strategies, collateral sensitivity (CS) drugs have opened a new avenue to defeat cancer by exploiting selective toxicity against multidrug-resistant (MDR) cancer. In the present study, a clinically used synthetic steroid hormone, danazol, was investigated for its CS properties and cytotoxic mechanisms. Compared with natural hormones, danazol possessed a stronger selective cytotoxicity against MDR cancer cells. Danazol induced the arrest of MDR cancer cells at the G2/M phase and caspase-8-related early apoptosis. Furthermore, in MDR cancer cells, danazol reduced STAT3 phosphorylation as well as the expression of STAT3-regulated genes involved in cell survival, such as c-Myc, CDC25, and CDK1. Danazol also upregulated the cell cycle inhibitor p21 in MDR cancer cells. Supporting the experimental results, docking studies have revealed that danazol can likely bind favourably with STAT3. Taken together, our results suggest that danazol exerts a CS effect by inhibiting the STAT3 pathway in MDR cancer cells and thus provides a possible solution for MDR cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690972PMC
http://dx.doi.org/10.1038/s41598-019-48169-2DOI Listing

Publication Analysis

Top Keywords

cancer cells
24
mdr cancer
24
cancer
9
danazol
8
collateral sensitivity
8
cells danazol
8
mdr
7
cells
6
danazol mediates
4
mediates collateral
4

Similar Publications

-polarized M2-like tumor-associated macrophages accelerate colorectal cancer development via IL-8 secretion.

Anim Cells Syst (Seoul)

December 2024

Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea.

(), a periodontal pathogen, has been implicated in the impairment of anti-tumor responses in colorectal cancer (CRC). The tumor microenvironment in CRC involves tumor-associated macrophages (TAMs), which are pivotal in modulating tumor-associated immune responses. The polarization of TAMs towards an M2-like phenotype promotes CRC progression by suppressing the immune system.

View Article and Find Full Text PDF

The anti-tumor effect of the IFNγ/Fas chimera expressed on CT26 tumor cells.

Anim Cells Syst (Seoul)

January 2025

Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Korea.

Interferon gamma (IFNγ) is well-known for its ability to stimulate immune cells in response to pathogen infections and cancer. To develop an effective cancer therapeutic vaccine, CT26 colon carcinoma cells were genetically modified to express IFNγ either as a secreted form (sIFNγ) or as a membrane-bound form. For the membrane-bound expression, IFNγ was fused with Fas (mbIFNγ/Fas), incorporating the extracellular cysteine-rich domains, transmembrane, and cytoplasmic domains of Fas.

View Article and Find Full Text PDF

Although peptide vaccines offer a novel venue for cancer immunotherapy, clinical success has been rather limited. Cell-penetrating peptides, due to their ability to translocate through the cell membrane, could be conjugated to the peptide vaccine to2 enhance therapeutic efficiency. The S4 transduction domain of the shaker-potassium channel was conjugated to mammaglobin-A (MamA) immunodominant epitope (MamA2.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with the worst prognosis among all subtypes. The impact of distinct cell subpopulations within the tumor microenvironment (TME) on TNBC patient prognosis has yet to be clarified.

Methods: Utilizing single-cell RNA sequencing (scRNA-seq) integrated with bulk RNA sequencing (bulk RNA-seq), we applied Cox regression models to compute hazard ratios, and cross-validated prognostic scoring using a GLMNET-based Cox model.

View Article and Find Full Text PDF

Generation of high avidity T cell receptors (TCRs) reactive to tumor-associated antigens (TAA) is impaired by tolerance mechanisms, which is an obstacle to effective T cell therapies for cancer treatment. NY-ESO-1, a human cancer-testis antigen, represents an attractive target for such therapies due to its broad expression in different cancer types and the restricted expression in normal tissues. Utilizing transgenic mice with a diverse human TCR repertoire, we isolated effective TCRs against NY-ESO-1 restricted to HLA-A*02:01.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!