The influence of thermal annealing on the properties of germanium grown on silicon (Ge-on-Si) has been investigated. Depth dependencies of strain and photoluminescence (PL) were compared for as-grown and annealed Ge-on-Si samples to investigate how intermixing affects the optical properties of Ge-on-Si. The tensile strain on thermally annealed Ge-on-Si increases at the deeper region, while the PL wavelength becomes shorter. This unexpected blue-shift is attributed to Si interdiffusion at the interface, which is confirmed by energy dispersive X-ray spectroscopy and micro-Raman experiments. Not only Γ- and L-valley emissions but also Δ-valley related emission could be found from the PL spectra, showing a possibility of carrier escape from Γ valley. Temperature-dependent PL analysis reveals that the thermal activation energy of Γ-valley emission increases at the proximity of the Ge/Si interface. By comparing the PL peak energies and their activation energies, both SiGe intermixing and shallow defect levels are found to be responsible for the activation energy increase and consequent efficiency reduction at the Ge/Si interface. These results provide an in-depth understanding of the influence of strain and Si intermixing on the direct-bandgap optical transition in thermally annealed Ge-on-Si.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690974 | PMC |
http://dx.doi.org/10.1038/s41598-019-48032-4 | DOI Listing |
In this paper, the performance of a silicon (Si) Mach-Zehnder modulator (MZM) is enhanced by implanting germanium (Ge) on Si, forming a graded Si-Ge (SiGe) core. A process simulation study is done, and the effect of substrate temperature, implantation energy, and pre-amorphization on the Ge composition and developed in-plane stress is observed. The dependence of active dopant concentration and defect-cluster formation on the annealing conditions is discussed.
View Article and Find Full Text PDFWe studied a high-speed electro-absorption optical modulator (EAM) of a Ge layer evanescently coupled with a Si waveguide (Si WG) of a lateral pn junction for high-bandwidth optical interconnect. By decreasing the widths of selectively grown Ge layers below 1 µm, we demonstrated a high-speed modulation of 56 Gbps non-return-to-zero (NRZ) and 56 Gbaud pulse amplitude modulation 4 (PAM4) EAM operation in the C-band wavelengths, in contrast to the L-band wavelengths operations in previous studies on EAMs of pure Ge on Si. From the photoluminescence and Raman analyses, we confirmed an increase in the direct bandgap energy for such a submicron Ge/Si stack structure.
View Article and Find Full Text PDFSci Rep
August 2019
Department of Physics and KI for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
The influence of thermal annealing on the properties of germanium grown on silicon (Ge-on-Si) has been investigated. Depth dependencies of strain and photoluminescence (PL) were compared for as-grown and annealed Ge-on-Si samples to investigate how intermixing affects the optical properties of Ge-on-Si. The tensile strain on thermally annealed Ge-on-Si increases at the deeper region, while the PL wavelength becomes shorter.
View Article and Find Full Text PDFNanotechnology
March 2017
State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China. Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, People's Republic of China.
High-quality Ge nanostructures are obtained by molecular beam epitaxy of Ge on Si(001) substrates at 200 °C and ex situ annealing at 400 °C. Their structural properties are comprehensively characterized by atomic force microscopy, transmission electron microscopy and Raman spectroscopy. It is disclosed that they are almost defect free except for some defects at the Ge/Si interface and in the subsequent Si capping layer.
View Article and Find Full Text PDFWe report on tensile-strained Ge/SiGe quantum-well (QW) metal-semiconductor-metal (MSM) photodetectors on Si substrates. A tensile strain of 0.21% is introduced into the Ge wells by growing the QW stack on in-situ annealed Ge-on-Si virtual substrates (VS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!