The identification of prognostic biomarkers is a priority for patients suffering from high-grade serous ovarian cancer (SOC), which accounts for >70% of ovarian cancer (OC) deaths. Meanwhile, borderline ovarian cancer (BOC) is a low malignancy tumor and usually patients undergo surgery with low probabilities of recurrence. However, SOC remains the most lethal neoplasm due to the lack of biomarkers for early diagnosis and prognosis. In this regard, BORIS (CTCFL), a CTCF paralog, is a promising cancer biomarker that is overexpressed and controls transcription in several cancer types, mainly in OC. Studies suggest that BORIS has an important function in OC by altering gene expression, but the effect and extent to which BORIS influences transcription in OC from a genome-wide perspective is unclear. Here, we sought to identify BORIS target genes in an OC cell line (OVCAR3) with potential biomarker use in OC tumor samples. To achieve this, we performed in vitro knockout and knockdown experiments of BORIS in OVCAR3 cell line followed by expression microarrays and bioinformatics network enrichment analysis to identify relevant BORIS target genes. In addition, ex vivo expression data analysis of 373 ovarian cancer patients were evaluated to identify the expression patterns of BORIS target genes. In vitro, we uncovered 130 differentially expressed genes and obtained the BORIS-associated regulatory network, in which the androgen receptor (AR) acts as a major transcription factor. Also, FN1, FAM129A, and CD97 genes, which are related to chemoresistance and metastases in OC, were identified. In SOC patients, we observed that malignancy is associated with high levels of BORIS expression while BOC patients show lower levels. Our study suggests that BORIS acts as a main regulator, and has the potential to be used as a prognostic biomarker and to yield novel drug targets among the genes BORIS controls in SOC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690894PMC
http://dx.doi.org/10.1038/s41389-019-0150-2DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
20
boris target
12
target genes
12
boris
11
boris ctcfl
8
androgen receptor
8
regulatory network
8
soc patients
8
cancer
7
patients
6

Similar Publications

Objective: this retrospective study aimed to evaluate the impact of BRCA mutational status on the outcomes of patients with advanced ovarian cancer treated with either primary debulking surgery (PDS) or neoadjuvant chemotherapy followed by interval debulking surgery (NACT-IDS). Material and a total of 79 patients with stage III-IV ovarian cancer treated at Elias Emergency University Hospital between January 2014 and March 2024 were included. Patients received either PDS followed by chemotherapy or NACT-IDS.

View Article and Find Full Text PDF

Advancements in pseudouridine modifying enzyme and cancer.

Front Cell Dev Biol

December 2024

Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China.

Pseudouridine (Ψ) is a post-transcriptional modifier of RNA, often referred to as the 'fifth nucleotide' owing to its regulatory role in various biological functions as well as because of its significant involvement in the pathogenesis of human cancer. In recent years, research has revealed various Ψ modifications in different RNA types, including messenger RNA, transfer RNA, ribosomal RNA, small nuclear RNA, and long noncoding RNA. Pseudouridylation can significantly alter RNA structure and thermodynamic stability, as the Ψ-adenine (A) base pair is more stable than the typical uridine (U)-A base pair is due to its structural similarity to adenine.

View Article and Find Full Text PDF

Background: Dual inhibition of cytotoxic T-lymphocyte associated protein 4 (CTLA-4) and programmed death ligand 1 (PD-L1) has been shown to be an effective treatment strategy in many cancers. We sought to determine the objective response rate of combination durvalumab (D) plus tremelimumab (TM) in parallel cohorts of patients with carefully selected rare cancer types in which these agents had not previously been evaluated in phase II trials and for which there was clinical or biological rationale for dual immune checkpoint inhibitor therapy to be active.

Methods: We designed a multi-centre, non-blinded, open-label phase II basket trial with each of the following 8 rare cancers considered a separate phase II trial: salivary carcinoma, carcinoma of unknown primary (CUP) with tumour infiltrating lymphocytes and/or expressing PD-L1, mucosal melanoma, acral melanoma, osteosarcoma, undifferentiated pleomorphic sarcoma, clear cell carcinoma of the ovary (CCCO) or squamous cell carcinoma of the anal canal (SCCA).

View Article and Find Full Text PDF

Although ovarian endometrioid carcinoma (OEC), frequently associated with endometrial endometrioid carcinoma (EEC), is often diagnosed at an early stage, the prognosis remains poor. The development of new, effective drugs to target these cancers is highly desirable. The bromodomain and extra-terminal domain (BET) family proteins serve a role in regulating transcription by recognizing histone acetylation, which is implicated in several types of cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!