Collagens carry out critical extracellular matrix (ECM) functions by interacting with numerous cell receptors and ECM components. Single glycine substitutions in collagen III, which predominates in vascular walls, result in vascular Ehlers-Danlos syndrome (vEDS), leading to arterial, uterine, and intestinal rupture and an average life expectancy of <50 years. Collagen interactions with integrin αβ are vital for platelet adhesion and activation; however, how these interactions are impacted by vEDS-associated mutations and by specific amino acid substitutions is unclear. Here, we designed collagen-mimetic peptides (CMPs) with previously reported Gly → Xaa (Xaa = Ala, Arg, or Val) vEDS substitutions within a high-affinity integrin αβ-binding motif, GROGER. We used these peptides to investigate, at atomic-level resolution, how these amino acid substitutions affect the collagen III-integrin αβ interaction. Using a multitiered approach combining biological adhesion assays, CD, NMR, and molecular dynamics (MD) simulations, we found that these substitutions differentially impede human mesenchymal stem cell spreading and integrin α-inserted (αI) domain binding to the CMPs and were associated with triple-helix destabilization. Although an Ala substitution locally destabilized hydrogen bonding and enhanced mobility, it did not significantly reduce the CMP-integrin interactions. MD simulations suggested that bulkier Gly → Xaa substitutions differentially disrupt the CMP-αI interaction. The Gly → Arg substitution destabilized CMP-αI side-chain interactions, and the Gly → Val change broke the essential Mg coordination. The relationship between the loss of functional binding and the type of vEDS substitution provides a foundation for developing potential therapies for managing collagen disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6768638PMC
http://dx.doi.org/10.1074/jbc.RA119.009685DOI Listing

Publication Analysis

Top Keywords

vascular ehlers-danlos
8
molecular underpinnings
4
underpinnings integrin
4
integrin binding
4
binding collagen-mimetic
4
collagen-mimetic peptides
4
peptides vascular
4
ehlers-danlos syndrome-associated
4
syndrome-associated substitutions
4
substitutions collagens
4

Similar Publications

A novel COL3A1 gene variant associated with sudden death due to spontaneous pneumothorax.

Forensic Sci Med Pathol

January 2025

Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.

Spontaneous pneumothorax (SP) is a condition defined by abnormal gas accumulation in the chest cavity. Mutations of the collagen type III alpha 1 chain, COL3A1 gene, are primarily linked to vascular Ehlers-Danlos syndrome (vEDS); however, they can also contribute to structural changes in the tissue, like bullae of the lungs. In this case report, we present a young, thinly built boy who died due to a spontaneous pneumothorax.

View Article and Find Full Text PDF

Introduction: The purpose of this study was to investigate perceptions and opinions on what constitutes determinants for quality of life (QoL) in individuals with syndromic Heritable Aortic Disease (sHTAD), utilizing a qualitative study approach. Further to discuss clinical implications and direction for research.

Method: A qualitative focus group interview study was conducted of 47 adults (Marfan syndrome (MFS) = 14, Loeys-Dietz syndrome (LDS) = 11, vascular Ehlers Danlos syndrome (EDS) = 11, relatives = 11).

View Article and Find Full Text PDF

: Dominant mutations in are known to cause vascular Ehlers-Danlos syndrome (vEDS) by impairing extracellular matrix (ECM) homeostasis. This disruption leads to the fragility of soft connective tissues and a significantly increased risk of life-threatening arterial and organ ruptures. Currently, treatments for vEDS are primarily symptomatic, largely due to a limited understanding of its underlying pathobiology and molecular mechanisms.

View Article and Find Full Text PDF

Ehlers-Danlos syndromes (EDS) are a group of connective tissue disorders associated with skin, ligament, blood vessel and organ abnormalities. Skin hyperextensibility, joint hypermobility and widened atrophic scars are characteristic of classical EDS. Vascular complications, though rare in classical EDS, can be life-threatening, and this necessitates one to look for vascular associations in non-vascular, such as classical, forms of EDS due to the heterogeneity of the syndrome.

View Article and Find Full Text PDF

Vascular Ehlers-Danlos syndrome (vEDS) is a rare inherited connective tissue disorder predominantly caused by pathogenic COL3A1 variants. Characteristic arterial and intestinal fragility and generalised severe tissue friability can lead to clinical events from childhood. We highlight a paucity of literature regarding children diagnosed with vEDS, possibly explained by a restraint in predictive testing, and present data on 63 individuals (23 index cases) with a clinical and genetic diagnosis of vEDS in childhood (<18 years) to address this.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!