()-Benzylsuccinate is the characteristic initial intermediate of anaerobic toluene metabolism, which is formed by a radical-type addition of toluene to fumarate. Its further degradation proceeds by activation to the coenzyme A (CoA)-thioester and β-oxidation involving a specific ()-2-benzylsuccinyl-CoA dehydrogenase (BbsG) affiliated with the family of acyl-CoA dehydrogenases. In this report, we present the biochemical properties of electron transfer flavoproteins (ETFs) from the strictly anaerobic toluene-degrading species and and the facultatively anaerobic bacterium We determined the X-ray structure of the ETF paralogue involved in toluene metabolism of , revealing strong overall similarities to previously characterized ETF variants but significantly different structural properties in the hinge regions mediating conformational changes. We also show that all strictly anaerobic toluene degraders utilize one of multiple genome-encoded related ETF paralogues, which constitute a distinct clade of similar sequences in the ETF family, for β-oxidation of benzylsuccinate. In contrast, facultatively anaerobic toluene degraders contain only one ETF species, which is utilized in all β-oxidation pathways. Our phylogenetic analysis of the known sequences of the ETF family suggests that at least 36 different clades can be differentiated, which are defined either by the taxonomic group of the respective host species (e.g., clade P for ) or by functional specialization (e.g., clade T for anaerobic toluene degradation). This study documents the involvement of ETF in anaerobic toluene metabolism as the physiological electron acceptor for benzylsuccinyl-CoA dehydrogenase. While toluene-degrading denitrifying proteobacteria use a common ETF species, which is also used for other β-oxidation pathways, obligately anaerobic sulfate- or ferric-iron-reducing bacteria use specialized ETF paralogues for toluene degradation. Based on the structure and sequence conservation of these ETFs, they form a new clade that is only remotely related to the previously characterized members of the ETF family. An exhaustive analysis of the available sequences indicated that the protein family consists of several closely related clades of proven or potential electron-bifurcating ETF species and many deeply branching nonbifurcating clades, which either follow the host phylogeny or are affiliated according to functional criteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779460PMC
http://dx.doi.org/10.1128/JB.00326-19DOI Listing

Publication Analysis

Top Keywords

anaerobic toluene
20
toluene degradation
12
strictly anaerobic
12
toluene metabolism
12
etf family
12
etf species
12
etf
11
toluene
9
anaerobic
9
electron transfer
8

Similar Publications

In soil polluted with benzene, toluene, ethylbenzene, and xylenes (BTEX), oxygen is rapidly depleted by aerobic respiration, creating a redox gradient across the plume. Under anaerobic conditions, BTEX biodegradation is then coupled with fermentation and methanogenesis. This study aimed to characterize this multi-step process, focusing on the interactions and functional roles of key microbial groups involved.

View Article and Find Full Text PDF

Polycyclic aromatic compounds and petroleum hydrocarbons (PHs) are hazardous pollutants and seriously threaten the environment and human health. However, native microbial communities can adapt to these toxic pollutants, utilize these compounds as a carbon source, and eventually evolve to degrade these toxic contaminants. With this in mind, we isolated 26 bacterial strains from various environmental soil samples.

View Article and Find Full Text PDF

Bioaugmentation to enhance degradation of acetochlor and pretilachlor in water and sediment under anaerobic conditions.

FEMS Microbiol Lett

January 2025

The department of Agriculture, Natural Resources and Environment, Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province 870000, Viet Nam.

Chloroacetamide herbicides are widely used to control weeds globally. In this study, three acetochlor-degrading mixed cultures using nitrate, sulfate, and ferric iron as electron acceptors were isolated and determined for their degradation under anaerobic conditions. The degradation rates of all mixed pure cultures in a mineral medium were not much different at 1 µM, while the rates at 50 µM were in the order: mixed culture using nitrate > sulfate > ferric iron as electron acceptors, giving 6.

View Article and Find Full Text PDF

Anaerobic co-digestion is emerging as an option for wastewater biosolids management. Variations in treatment parameters can impact odour emissions and, in turn, odour nuisance reduces community acceptance and alternatives for beneficial reuse of biosolids via land application. This study assessed odour emissions from digested sludge and biosolids resulting from the anaerobic co-digestion of wastewater sludge with beverage rejects (beer and cola) and food wastes.

View Article and Find Full Text PDF

Industrial wastewater management is a significant global challenge. Sludge microbiota from swine farms may play a crucial role in enhancing wastewater treatment processes, thereby reducing water pollution from industrial activities. A deeper understanding of this complex community could lead to innovative approaches for improving wastewater treatment methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!