AI Article Synopsis

  • Sitafloxacin is effective against various respiratory pathogens, showing promising results for treating infections in critically ill patients.
  • Blood and bronchoalveolar lavage (BAL) samples were collected from 12 patients after taking a single oral dose of 200 mg, revealing good drug penetration into the epithelial lining fluid (ELF).
  • The study found an average ELF to plasma concentration ratio of about 1.02, indicating that sitafloxacin effectively reaches the site of infection in patients with pneumonia.

Article Abstract

Sitafloxacin showed potent activity against various respiratory pathogens. Blood and bronchoalveolar lavage (BAL) fluid samples were obtained from 12 subjects after a single oral dose of sitafloxacin 200 mg. The mean ± SD (median) maximum ratio of epithelial lining fluid (ELF) to unbound plasma concentration was 1.02 ± 0.58 (1.33). The penetration ratios based on the mean and median area under the curve from 0 to 8 h (AUC) were 0.85 and 0.79 μg · h/ml, respectively. Sitafloxacin penetrates well into ELF in critically ill Thai patients with pneumonia. (This study has been registered in the Thai Clinical Trials Registry [TCTR] under registration no. TCTR20170222001.).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6761513PMC
http://dx.doi.org/10.1128/AAC.00800-19DOI Listing

Publication Analysis

Top Keywords

epithelial lining
8
lining fluid
8
critically ill
8
ill thai
8
thai patients
8
patients pneumonia
8
pharmacokinetics penetration
4
sitafloxacin
4
penetration sitafloxacin
4
sitafloxacin alveolar
4

Similar Publications

Immune Regulation of Goblet Cell and Mucus Functions in Health and Disease.

Annu Rev Immunol

January 2025

2Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden; email:

The mucosal surfaces of the body are the most vulnerable points for infection because they are lined by single or multiple layers of very active epithelial cells. The main protector of these cells is the mucus system generated by the specialized goblet cells secreting its main components, the gel-forming mucins. The organization of the mucus varies from an attached mucus that is impenetrable to bacteria in the large intestine to a nonattached, more penetrable mucus in the small intestine and airways.

View Article and Find Full Text PDF

Lactoperoxidase (LPO) is a heme-containing mammalian enzyme that is found in the extracellular fluids of animals including plasma, saliva, airway epithelial and nasal lining fluids, milk, tears, and gastric juices. LPO uses hydrogen peroxide (HO) to convert substrates into oxidized products. Previous structural studies have shown that HO, CO, and CN are bound to LPO at the distal heme cavity by coordinating with heme iron.

View Article and Find Full Text PDF

Ductular reaction (DR) is the hallmark of cholestatic diseases manifested in the proliferation of bile ductules lined by biliary epithelial cells (BECs). It is commonly associated with an increased risk of fibrosis and liver failure. The receptor for advanced glycation end products (RAGE) was identified as a critical mediator of DR during chronic injury.

View Article and Find Full Text PDF

Breast cancer remains one of the most prevalent malignancies among women globally. Despite advances in therapeutic options, the prognosis often remains challenging. Breast cancer typically originates in the epithelial lining of glandular tissue ducts (85%) or lobules (15%).

View Article and Find Full Text PDF

Imbalance of airway proteases and antiproteases has been implicated in diseases such as COPD and environmental exposures including cigarette smoke and ozone. To initiate infection, endogenous proteases are commandeered by respiratory viruses upon encountering the airway epithelium. The airway proteolytic environment likely contains redundant antiproteases and proteases with diverse catalytic mechanisms, however a proteomic profile of these enzymes and inhibitors in airway samples has not been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!