Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Human indoleamine 2,3-dioxygenase 1 (IDO) is a heme enzyme that catalyzes the first reaction of the main metabolic pathway of L-tryptophan (Trp) to produce N-formylkynurenin. The reaction involves cleavage of the C=C bond in the Trp indole ring and insertion of two atomic oxygens from the iron-bound O into the indole 2 and 3 position. For establishment of the chemical mechanism of this unique enzymatic reaction, it is necessary to determine the conformation and electronic state of the substrate Trp bound to IDO. In this study, we measured the ultraviolet resonance Raman spectra of IDO in the presence of Trp to detect the vibrational modes of the substrate Trp. We compared the ultraviolet resonace Raman spectra of Trp in a ternary complex (Trp-bound cyanide enzyme) and a binary complex (Trp-bound reduced enzyme) of IDO with that of free Trp in solution and found that binding to IDO influences the conformation of Trp, resulting in similar changes in the two complexes, especially around the C-C bond. However, the presence of the diatomic ligand at the heme sixth coordination site in the ternary complex significantly alters the mobility and electronic structure of Trp, most likely resulting in the C=C bond cleavage in the enzymatic reaction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6712549 | PMC |
http://dx.doi.org/10.1016/j.bpj.2019.07.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!