5-Azacytidine improves the meiotic maturation and subsequent in vitro development of pig oocytes.

Anim Reprod Sci

Department of Animal Science and Biotechnology, Sangji Youngseo College, Wonju 26339, South Korea. Electronic address:

Published: September 2019

Treatment of donor cells and/or cloned embryos with cytidine analogues, having an Aza group at its 5th carbon (5-Aza), such as 5-Azacytidine (5-Aza-C) or 5-Aza-2'-deoxycytidine (5-Aza-dC) improves the in vitro development of cloned embryos produced by somatic cell nuclear transfer (SCNT). In vitro maturation (IVM) of immature pig oocytes treated with 5-Aza-C not only results in greater (P < 0.05) meiotic maturation to the MII stage but also enhances the capacity of 5-Aza-C treated oocytes for early embryonic development after parthenogenetic activation (PA), in vitro fertilization (IVF) or SCNT in a dose-dependent manner (0-10 μM). Cloned embryos generated from 5-Aza-C (0.01 μM) treated oocytes had an increased capacity to develop to the blastocyst stage (14.1 ± 1.5% compared with 9.6 ± 1.8%), greater probability of hatching (61.8 ± 1.5% compared with 45.0 ± 3.9%) and contained a greater number of cells per blastocyst (38.5 ± 4.4 compared with 30.5 ± 3.4) than those produced from non-treated control oocytes (P < 0.05). Data from the present study indicate that treatment of oocytes with 5-Aza-C may be an important approach to enhance the meiotic maturation and subsequent in vitro development of pig embryos. Future studies should be conducted to determine the underlying mechanism of improved early embryonic development of 5-Aza-C treated oocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anireprosci.2019.106118DOI Listing

Publication Analysis

Top Keywords

vitro development
8
pig oocytes
8
cloned embryos
8
5-azacytidine improves
4
improves meiotic
4
meiotic maturation
4
maturation subsequent
4
subsequent vitro
4
development pig
4
oocytes treatment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!