Solution-based direct patterning on an elastomer substrate with meniscus-dragging deposition (MDD) enables fabrication of very thin carbon nanotube (CNT) layers in the nanometer scale (80-330 nm). To fabricate the CNT pattern with CNT solution, contact angle, electrical variation, mechanical stress, and surface cracks of elastomer substrate were analyzed to identify the optimal conditions of O treatment (treatment for 30 s with RF power of 50 W in O atmosphere of 50 sccm) and mixture ratio between Ecoflex and polydimethylsiloxane (PDMS) (Ecoflex:PDMS = 5:1). The type of mask for patterning of the CNT layer was determined through quantitative analysis for sharpness and uniformity of the fabricated CNT pattern. Through these optimization processes, the CNT pattern was produced on the elastomer substrate with selected mask (30 μm thick oriented polypropylene). The thickness of CNT pattern was also controlled to have hundreds nanometer and 500 μm wide rectangular and circular shapes were demonstrated. Furthermore, the change in the current and resistance of the CNT layer according to the applied strain on the elastomer substrate was analyzed. Our results demonstrated the potential of the MDD method for direct CNT patterning with high uniformity and the possibility to fabricate a stretchable sensor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722655PMC
http://dx.doi.org/10.3390/mi10080530DOI Listing

Publication Analysis

Top Keywords

elastomer substrate
16
cnt pattern
16
cnt
9
direct patterning
8
carbon nanotube
8
substrate analyzed
8
cnt layer
8
substrate
5
patterning carbon
4
nanotube thin
4

Similar Publications

Magnetic field-assisted control of magnetite location is a promising strategy for developing flexible, electrically conductive sensors with enhanced performance and adjustable properties. This study investigates the effect of static magnetic fields applied on thermoplastic elastomer (TPE) composites with magnetite and multi-walled carbon nanotubes (MWCNT). The composites were prepared by compression moulding and the magnetic field was applied on the mould cavity during processing.

View Article and Find Full Text PDF

Organic photodetectors (OPDs) are key devices for monitoring vital signs, such as heart rate and blood oxygen level. For realizing the long-term measurement of biosignals, stable operation is essential. To improve the stability of OPDs, it is important to analyze each layer to understand the degradation mechanism.

View Article and Find Full Text PDF

Nature provides many examples of the benefits of nanoscopic surface structures in areas of adhesion and antifouling. Herein, the design, fabrication, and characterization of liquid crystal elastomer (LCE) films are presented with nanowire surface structures that exhibit tunable stimuli-responsive deformations and enhanced adhesion properties. The LCE films are shown to curl toward the side with the nanowires when stimulated by heat or organic solvent vapors.

View Article and Find Full Text PDF

Biomimetic, Interface-Free Stiffness-Gradient PDMS-Co-Polyimide-Based Soft Materials for Stretchable Electronics and Soft Robotics.

ACS Mater Au

January 2025

Christian Doppler Laboratory for Soft Structures for Vibration Isolation and Impact Protection (ADAPT), School of Education, STEM Education, Johannes Kepler University Linz, 4040 Linz, Austria.

Soft materials play a pivotal role in the efficacy of stretchable electronics and soft robotics, and the interface between the soft devices and rigid counterparts is especially crucial to the overall performance. Herein, we develop polyimide-polydimethylsiloxane (PI-PDMS) copolymers that, in various ratios, combine on a molecular level to give a series of chemically similar materials with an extremely wide Young's modulus range starting from soft 2 MPa and transitioning to rigid polymers with up to 1500 MPa. Of particular significance is the copolymers' capacity to prepare seamless stiffness gradients, as evidenced by strain distribution analyses of gradient materials, due to them being unified on a molecular level.

View Article and Find Full Text PDF

Silver nanowire (Ag NW)-based elastic conductors have been considered a promising candidate for key stretchable electrodes in wearable devices. However, the weak interface interaction of Ag NWs and elastic substrates leads to poor durability of electronic devices. For everyday usage, an additional self-healing ability is required to resist scratching and damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!