Towards understanding two-level-systems in amorphous solids: insights from quantum circuits.

Rep Prog Phys

IBM Research Zurich, 8803 Rüschlikon, Switzerland. Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland. ARC Centre of Excellence for Engineered Quantum Systems, School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia.

Published: December 2019

Amorphous solids show surprisingly universal behaviour at low temperatures. The prevailing wisdom is that this can be explained by the existence of two-state defects within the material. The so-called standard tunneling model has become the established framework to explain these results, yet it still leaves the central question essentially unanswered-what are these two-level defects (TLS)? This question has recently taken on a new urgency with the rise of superconducting circuits in quantum computing, circuit quantum electrodynamics, magnetometry, electrometry and metrology. Superconducting circuits made from aluminium or niobium are fundamentally limited by losses due to TLS within the amorphous oxide layers encasing them. On the other hand, these circuits also provide a novel and effective method for studying the very defects which limit their operation. We can now go beyond ensemble measurements and probe individual defects-observing the quantum nature of their dynamics and studying their formation, their behaviour as a function of applied field, strain, temperature and other properties. This article reviews the plethora of recent experimental results in this area and discusses the various theoretical models which have been used to describe the observations. In doing so, it summarises the current approaches to solving this fundamentally important problem in solid-state physics.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6633/ab3a7eDOI Listing

Publication Analysis

Top Keywords

amorphous solids
8
superconducting circuits
8
understanding two-level-systems
4
two-level-systems amorphous
4
solids insights
4
quantum
4
insights quantum
4
circuits
4
quantum circuits
4
circuits amorphous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!