A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Construction of brain structural connectivity network using a novel integrated algorithm based on ensemble average propagator. | LitMetric

An important task for neuroscience is to accurately construct structural connectivity network of human brain. Tractography constructed based on high angular resolution diffusion imaging (HARDI) provides valuable information of human brain structural connections. Existing algorithms, mainly categorized as deterministic or probabilistic, come with inherent limitations (e.g., fiber direction uncertainty induced by noise, or anatomically unreasonable connections and heavy computational cost). In this study, a novel integrated algorithm was proposed to construct brain structural connectivity network by incorporating the deterministic path planning and probabilistic connection strength estimation, based on ensemble average propagator (EAP). We first estimated EAPs from multi-shell samples using the spherical polar Fourier imaging (SPFI), and then extracted diffusion orientations coinciding with neural fiber tracts. Only under angular constraints, the deterministic path planning algorithm was subsequently used to find all reasonable pathways between pairwise white matter (WM) voxels in different regions of interest (ROIs). Consequently, a train of consecutive WM voxels along each of the identified pathways was determined, and the connection strength of these pathways was computed by integrating their EAP alignment over a solid angle. The connection strength of a pair of WM voxels was assigned as the connection strength with the largest connection possibility. Finally, the connection strength between two ROIs was calculated as the sum of all the connection probabilities of each pair of WM voxels in the ROIs. A comparison against voxel-graph based probabilistic tractography method was performed on Fibercup phantom dataset, and the results demonstrated that the proposed method can produce better structural connection and is more computationally economical. Lastly, three datasets from Human Connectome Project (HCP) S1200 group were tested and their structural connectivity networks were constructed for topological analysis. The results showed great consistency in network metrics with previous WM network studies in healthy adults.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2019.103384DOI Listing

Publication Analysis

Top Keywords

connection strength
20
structural connectivity
16
brain structural
12
connectivity network
12
novel integrated
8
integrated algorithm
8
based ensemble
8
ensemble average
8
average propagator
8
human brain
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!