The oceanic uptake of carbon dioxide (CO) is increasing and changing the seawater chemistry, a phenomenon known as ocean acidification (OA). Besides the expected physiological impairments, there is an increasing evidence of detrimental OA effects on the behavioral ecology of certain marine taxa, including cephalopods. Within this context, the main goal of this study was to investigate, for the first time, the OA effects (∼1000 μatm; ΔpH = 0.4) in the development and behavioral ecology (namely shelter-seeking, hunting and response to a visual alarm cue) of the common cuttlefish () early life stages, throughout the entire embryogenesis until 20 days after hatching. There was no evidence that OA conditions compromised the cuttlefish embryogenesis - namely development time, hatching success, survival rate and biometric data (length, weight and Fulton's condition index) of newly hatched cuttlefish were similar between the normocapnic and hypercapnic treatments. The present findings also suggest a certain behavioral resilience of the cuttlefish hatchlings toward near-future OA conditions. Shelter-seeking, hunting and response to a visual alarm cue did not show significant differences between treatments. Thus, we argue that cuttlefishes' nekton-benthic (and active) lifestyle, their adaptability to highly dynamic coastal and estuarine zones, and the already harsh conditions (hypoxia and hypercapnia) inside their eggs provide a degree of phenotypic plasticity that may favor the odds of the recruits in a future acidified ocean. Nonetheless, the interacting effects of multiple stressors should be further addressed, to accurately predict the resilience of this ecologically and economically important species in the oceans of tomorrow.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6676914 | PMC |
http://dx.doi.org/10.3389/fphys.2019.00975 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Playa Palo de Santa Rita, C.P. 23096, La Paz, Baja California Sur, Mexico.
The present review provides the first analysis and synthesis of the available scientific information on the effects of anthropogenic contaminants on cephalopod embryos, paralarvae, and juveniles. We evaluated 46 articles published between 1970 and 2023 that focused on trace elements (69%), pharmaceutical compounds (11%), persistent organic compounds (11%), and plastics (9%). To date, the greatest scientific effort has originated from Europe and Asia (France [57%], China [9%], Italy [7%], and Spain [4%]), with few reports available from the rest of the world.
View Article and Find Full Text PDFMicron
February 2025
Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Republic of Korea. Electronic address:
J Insect Physiol
December 2024
Centro de BioInvestigaciones (CeBio‑CICBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Pergamino, Argentina; Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CITNOBA‑CONICET), Pergamino, Argentina; Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, La Plata, Argentina; Max Planck Institute for Multidisciplinary Sciences, Dept. Tissue Dynamics and Regeneration, Göttingen, Germany. Electronic address:
Oocyte polarity establishment is a conserved and crucial phenomenon for embryonic development. It relies on the precise spatial localization of maternal factors deposited during oocyte development, which is essential for establishing and maintaining cell polarity and subsequently specifying embryonic axes. The heterogeneous nuclear ribonucleoprotein (hnRNP) encoded by the squid (sqd) gene has been implicated in mRNA localization and embryonic axis establishment in Drosophila melanogaster.
View Article and Find Full Text PDFBackground: Assessing the historical dynamics of key food web components is crucial to understand how climate change impacts the structure of Arctic marine ecosystems. Most retrospective stable isotopic studies to date assessed potential ecosystem shifts in the Arctic using vertebrate top predators and filter-feeding invertebrates as proxies. However, due to long life histories and specific ecologies, ecosystem shifts are not always detectable when using these taxa.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
October 2024
Institute for East China Sea Research, Organization for Marine Science and Technology, Nagasaki University, 1551-7, Taira-machi, Nagasaki 851-2213, Nagasaki, Japan.
Gonadotropin-releasing hormone (GnRH)-like peptides are multifunctional neuropeptides involved in cardiac control, early ontogenesis, and reproduction in cephalopods. However, the precise role of GnRH-like peptides in embryonic development and juvenile growth in cephalopods remains unknown. In this study, we showed that GnRH-like peptides are involved in the embryonic development of kisslip cuttlefish (Sepia lycidas).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!