A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genetic risk of Parkinson disease and progression:: An analysis of 13 longitudinal cohorts. | LitMetric

Genetic risk of Parkinson disease and progression:: An analysis of 13 longitudinal cohorts.

Neurol Genet

Laboratory of Neurogenetics (H.I., C.B., H.L.L., F.F., D.G.H., A.B.S., M.A.N.), National Institute on Aging, National Institutes of Health, Bethesda; Data Tecnica International (H.I., M.A.N.), Glen Echo, MD; Precision Neurology Program (G.L., C.R.S.), Harvard Medical School, Brigham and Women's Hospital; Neurogenomics Laboratory (G.L., C.R.S.), Harvard Medical School, Brigham and Women's Hospital; Ann Romney Center for Neurologic Diseases (G.L., C.R.S.), Brigham and Women's Hospital, Boston, MA; The Norwegian Centre for Movement Disorders (J.M.-G., G.A.), Stavanger University Hospital; Department of Chemistry (J.M.-G., G.A.), Bioscience and Environmental Engineering, University of Stavanger, Norway; Assistance-Publique Hôpitaux de Paris (J.-C.C.), ICM, INSERM UMRS 1127, CNRS 7225, ICM, Department of Neurology and CIC Neurosciences, Pitié-Salpêtrière Hospital, Paris, France; Department of Neurology (L.P., M.T.), Oslo University Hospital, Norway; Department of Neurology (M.N., B.R.B., B.P.W.), Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands; Michael J Fox Foundation (S.J.H.), New York; Translational Genome Sciences (K.-D.H.N, K.E.), Biogen, Cambridge, MA; Department of Neurology University of Pennsylvania (J.R.), Philadelphia, PA; Department of Biostatistics and Computational Biology (S.E.), University of Rochester, NY; Department of Computer Science (F.F.), University of Illinois Urbana-Champaign; Department of Neurology (P.A.), Center for Health + Technology, University of Rochester, NY; Department of Clinical Neurosciences (K.M.S., R.W.), University of Cambridge, John van Geest Centre for Brain Repair, UK; Department of Pathology and Laboratory Medicine (V.M.V.D.), Center for Neurodegenerative Disease Research, Parelman School of Medicine at the University of Pennsylvania, Philadelphia; Genetics and Pharmacogenomics (A.G.D.-W.), Merck Research Laboratory, Boston, MA; Statistical Genetics (A.G.D.-W.), Biogen, Cambridge, MA; Institut du cerveau et de la moelle épinière ICM (A.B., F.D.); Sorbonne Université SU (A.B.); INSERM UMR (A.B.), Paris, France; Department of Neurology (G.A.), Stavanger University Hospital, Norway; Preventive Neurology Unit (A.J.N.), Wolfson Institute of Preventive Medicine, Queen Mary University of London; Department of Molecular Neuroscience (A.J.N.), UCL Institute of Neurology, London, UK; Department of Neurology (O.-B.T.), Haukeland University Hospital; University of Bergen (O.-B.T.), Bergen, Norway; Department of Neurology (J.R.E.), Nottingham University NHS Trust, UK; Centre for Clinical Brain Sciences (D.P.B.), University of Edinburgh; Anne Rowling Regenerative Neurology Clinic (D.P.B.), University of Edinburgh; Usher Institute of Population Health Sciences and Informatics (D.P.B.), University of Edinburgh, Scotland; Department of Medical and Molecular Genetics (C.E.W.), Indiana University, Indianapolis; Department of Neurology (D.K.S.), Beth Israel Deaconess Medical Center; Harvard Medical School (D.K.S.), Boston; Voyager Therapeutics (B.R.), Cambridge, MA; Department of Neurology (B.R.), University of Rochester School of Medicine, NY; Institute of Clinical Medicine (M.T.), University of Oslo, Norway; German Center for Neurodegenerative Diseases-Tubingen (P.H.); HIH Tuebingen (P.H.), Germany; Department of Psychiatry (D.W.), University of Pennsylvania School of Medicine; Department of Veterans Affairs (D.W.), Philadelphia, PA; and Department of Clinical Neurosciences (R.A.B., C.H.W.-G.), University of Cambridge, UK; Department of Neurology (J.J.V.H.), Leiden University Medical Center, The Netherlands.

Published: August 2019

Objective: To determine if any association between previously identified alleles that confer risk for Parkinson disease and variables measuring disease progression.

Methods: We evaluated the association between 31 risk variants and variables measuring disease progression. A total of 23,423 visits by 4,307 patients of European ancestry from 13 longitudinal cohorts in Europe, North America, and Australia were analyzed.

Results: We confirmed the importance of on phenotypes. variants were associated with the development of daytime sleepiness (p.N370S: hazard ratio [HR] 3.28 [1.69-6.34]) and possible REM sleep behavior (p.T408M: odds ratio 6.48 [2.04-20.60]). We also replicated previously reported associations of variants with motor/cognitive declines. The other genotype-phenotype associations include an intergenic variant near and the faster development of motor symptom (Hoehn and Yahr scale 3.0 HR 1.33 [1.16-1.52] for the C allele of rs76904798) and an intronic variant in and the development of wearing-off effects (HR 1.66 [1.19-2.31] for the C allele of rs114138760). Age at onset was associated with variant p.M393T (-0.72 [-1.21 to -0.23] in years), the C allele of rs199347 (intronic region of , 0.70 [0.27-1.14]), and G allele of rs1106180 (intronic region of , 0.62 [0.21-1.03]).

Conclusions: This study provides evidence that alleles associated with Parkinson disease risk, in particular variants, also contribute to the heterogeneity of multiple motor and nonmotor aspects. Accounting for genetic variability will be a useful factor in understanding disease course and in minimizing heterogeneity in clinical trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6659137PMC
http://dx.doi.org/10.1212/NXG.0000000000000348DOI Listing

Publication Analysis

Top Keywords

parkinson disease
12
risk parkinson
8
disease progression
8
longitudinal cohorts
8
variables measuring
8
measuring disease
8
risk variants
8
intronic region
8
disease
6
genetic risk
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!